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Abstract

1 Main Results

Let Z2 = 1
n

∑
j∈[k] 11(Nj = 1) be the empirical avereage of the number of unique observations out of

n i.i.d samples, where Nj =
∑n

i=1 11(xi = i) counts the number of occurrences for all j ∈ [k]. The
following algorithm is an optimal uniformity tester as long as n ≤ k.

Theorem 1.1. Let τ = (1− 1
k )

n−1 − nα2

8 . As long as n ≥ O(
√
k

α2 )

P

[
Z2 ≤ τ

∣∣∣dTV (p, UK) = 0

]
≥ 2

3
(1)

and

P

[
Z2 ≥ τ

∣∣∣dTV (p, UK) ≥ α

]
≥ 2

3
(2)

Proof. The first thing to check is what the expectation of the statistic looks like:

E[Z2] =
1

n

∑
j∈[k]

pj(1− pj)
n−1 (3)

Now this does not look related to ||p⃗ − u⃗k||1 in anyway. However by the Lemma 2.1 described
below we have

Eu⃗k
[Z2]− Ep⃗[Z2] ≥

n

16k
dTV (p⃗, u⃗k)

2 ≥ n

16k
α2 := ∆ (4)

Additionally, if dTV (p⃗, u⃗k)
2 = 0 we have that E[Z2] =

1
n (1−

1
k )

n−1. Thus from the picture below
a reasonable test is to just set τ = Eu⃗k

[Z2]−∆/2. If the variance of Z2 is much less than n
8kα

2 we are
would be done. So there is only one thing left to do is upper bound the variance for both cases. Then
we just invoke Chebychev’s inequality and the rest follows
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Var[Z2] =
1

n2

∑
i,j∈[k]

E[11{Nj = 1}]E[11{Ni = 1}]− E[Z2]
2 (5)

=
1

n

∑
j∈[k]

1

n
E[11{Nj = 1}] + 1

n2

∑
i̸=j

E[11{Nj = 1}]E[11{Ni = 1}]− E[Z2]
2 (6)

=
1

n
E[Z2]−

n

n
E[Z2]

2 +
1

n2

∑
i ̸=j

n(n− 1)pipj(1− pj − p− i)n−2 (7)

= E[Z2]
1

n
(1− E[Z2]) +

n− 1

n

(∑
i ̸=j

pipj(1− pj − p− i)n−2 − E[Z2]
2

)
(8)

≤ 1

n
(1− E[Z2]) +

(∑
i ̸=j

pipj(1− pj − p− i)n−2 − E[Z2]
2

)
(9)

(7): That is the probability of selecting sampling two elements once and once only is pipj(1−pi−pj).
There are n options for i and n− 1 options for j.

Now when p⃗ = u⃗, we have E[Z2] = (1 − 1
k )

n−1, so if we plug this back into the above equation

we get VarZ2 ≤ 3
k . Thus in order for our tests to work out nicely, we want O( 1k ) ≤ ∆2 = O(n

2α4

k2 ).
Re-arranging and solving we get what we want. The explicit derivation is shown below

(10)

Now the variance for the far away case. ⟨⟨ We use this magical lemma 2.2 to get this upper bound.
I have no intuition for this. ⟩⟩

(∑
i ̸=j

pipj(1− pj − p− i)n−2 − E[Z2]
2

)
(11)

=
∑
i ̸=j

pipj(1− pj − p− i)n−2 −
∑
i,j

pi(1− pi)
n−1pj(1− pj)

n−1

(12)

≤
∑
i ̸=j

pipj

(
(1− pj − p− i)n−2 − (1− pi)

n−1(1− pj)
n−1
)
(13)

≤ 1

n− 1

∑
j∈[k]

pj

(
1− (1− pj)

n−1
)

(14)

=
1

n− 1
(1− E[Z2]) (15)

(14): This is a direct application of Lemma 2.2 with m = n− 1 and xi = pi
Plugging this back into (9) we get, for a general p⃗

Var[Z2] ≤
1

n
(1− E[Z2]) +

1

n− 1
(1− E[Z2]) (16)

≤ 3

n
(1− E[Z2]) (17)

=
3

n
(1− Eu⃗k

[Z2] + Eu⃗k
[Z2]− E[Z2]) (18)

= 3
(1
k
+

∆(p)

n

)
(19)
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(17): 1
n−1 ≤ 2

n
The first term is the same as the uniform case, the second term is an equivalent statment.

3∆(p)

n
≪ ∆(p)2 (20)

3

n
≪ ∆(p) ≤ nα2

k
(21)

(22)

The algebra works out to need to n ≥ O
(√

k
α

)
Ok we have the variance, and we have shown that it does not exceed the expectation gap by too

much under our assumptions. Now we formalise all of this and apply standard chebychev. First the
uniform case

P

[
Z2 ≤ τ

∣∣∣dTV (p, UK) = 0

]
= P

[
Z2 ≤ Eu⃗k

[Z2]−
∆

2

]
(23)

≤ 4Var[Z2]

∆2
(24)

≤ c1k

n2α4
≤ 1

3
(25)

Now for the far away case

P

[
Z2 ≥ τ

∣∣∣dTV (p, UK) ≥ α

]
= P

[
Z2 ≥ Eu⃗k

[Z2]−
∆

2

]
(26)

= P

[
Z2 ≥ Ep⃗[Z2] + ∆(p)− ∆

2

]
(27)

= P

[
Z2 ≥ Ep⃗[Z2] +

∆(p)

2
+

∆(p)

2
− ∆

2

]
(28)

≤ P

[
Z2 ≥ Ep⃗[Z2] +

∆(p)

2

]
(29)

≤ 4Var[Z2]

∆(p)2
(30)

≤ 12
( 1

k∆(p)2
+

1

n∆(p)

)
(31)

≤ 12
( 1

k∆2
+

1

n∆

)
(32)

(33)

Plugging in ∆ = nα2

16k we get what we want.

2 Useful Lemmas

Lemma 2.1. Let X⃗ = (x1, . . . , xn). If n ≤ k we have

Eu⃗k
[Z2]− Ep⃗[Z2] ≥

n

16k
dTV (p⃗, u⃗k)

2 (34)

Proof. I have to admit the calculus tricks were not immediately intuitive to me.

Lemma 2.2. Fix m ≥ 1, k ∈ N. For any x1, . . . , xk where (
∑k

i=1 xi) = 1, we have

m
∑

1≤i<j≤k xixj

(
(1− xi − xj)

m−1 − (1− xi)
m(1− xj)

m
)

∑k
i=1 xi

(
1− (1− xi)m

) ≤ 1 (35)
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Proof. I do not have much intuition for why this is true.
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