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Abstract

Re-deriving well-known results in Uniformity Testing

1 Problem Statement

These notes are derived from the excellent survey by Clement Canonne [Can22]. We have n i.i.d samples
from an unknown distribution p ∈ Simplex(k). We want to guess whether p = Uk or dTV (p, Uk) ≥ ϵ,
where Uk is the uniform distribution over Simplex(k). Furthermore, we would like to guess correctly
at least two-thirds of the time i.e.

P
[
Guess p = Uk|p = Uk

]
≥ 2

3
(1)

P
[
Guess dTV (p, Uk) ≥ ϵ|dTV (p, Uk) ≥ ϵ

]
≥ 2

3
(2)

To guess we need to design some kind of test, that takes as input the parameters k, ϵ and the i.i.d
samples and spits out a guess. One very natural test is to count how many of the samples are the
same. If the distribution was truly uniformly random, we do not expect to see a lot of overlap between
the samples. Before describing the test in the next section we state some general facts about norms
and distances.

dTV (p, q) =
1

2
||p− q||1 ≤

√
k

2
||p− q||2 (3)

The proof for (3) comes from Cauchy-Schwartz and can be found in any linear algebra textbook

under the title “equivalence of norms”. Thus if we have dTV (p, q) ≥ ϵ, then we have ||p − q||2 ≥ 4ϵ2

k .
Furthermore, if q = Uk, then we have ||p− Uk||22 = ||p||22 − 1

k . Thus combining all these facts we have

• If dTV (p, Uk) = 0, then ||p||22 = 1
k

• Otherwise, dTV (p, Uk) ≥ ϵ, then ||p||22 ≥ 1+4ϵ2

k

Note that ||p||kk is also called the collision probability of k samples drawn from p having the same
value.

2 Tester Based on Collisions

Let X1, . . . , Xn represent n i.i.d samples from p. Let Z denote the number of pairwise collisions i.e

Z =
1(
n
2

) ∑
1≤s<t≤n

1(Xs = Xt) (4)

Z represents the fraction of pairwise collisions as a sum of i.i.d indicators and P [1(Xs = Xt)] =
E[1(Xs = Xt)] = ||p||22. Therefore E[Z] = ||p||22. The obvious test is to pick some threshold τ such
that if Z ≤ τ , declare that p = Uk and dTV (p, Uk) ≥ ϵ otherwise. Say we pick a threshold between 1

k
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and 1+4ϵ2

k , so sayτ = 1+2ϵ2

k . Then we want to know how many samples we need for equations (1) and
(2) to hold.

We need to bound Type I and Type II errors to upper-bound the probability of making a mistake.
To upper bound Type I error (or completeness error) we have that the data comes from the uniform
distribution but our test threshold still crossed τ , so we need to upper bound the following.

P
[
Z ≥ τ |p = Uk

]
= P

[
Z ≥ 1 + 2ϵ2

k

]
(5)

= P
[
Z ≥ (1 + 2ϵ2)E[Z]

]
(6)

≤ P
[
Z ≥ (1 + ϵ2)E[Z]

]
(7)

We drop the conditional from (5) onwards to make the notation clearer. (6) comes from the
assumption that p = Uk. To upper bound Type II error, we need upper bound the following quantity

P
[
Z ≤ τ |dTV (p, Uk) ≥ ϵ

]
= P

[
Z ≤ 1 + 2ϵ2

k

]
(8)

≤ P
[
Z ≤ (1− ϵ2)(1 + 4ϵ2)

k

]
(9)

≤ P
[
Z ≤ (1− ϵ2)E[Z]

]
(10)

(9) comes from the fact that when ϵ ≤ 1
2 , we have (1 − ϵ2)(1 + 4ϵ2) ≥ (1 + 2ϵ2). (10) comes from

the fact that E[Z] ≥ (1+4ϵ2)
k from our assumption. Thus if we combined equation (10) and (7) and

applied Chebychev we would get

P
[
|Z − E[Z]| ≤ ϵ2E[Z]

]
≤ Var(Z)

ϵ4E[Z]2
(11)

If the variance of the estimator is much larger than the wiggle room we’ve given us, then we would

have no hope i.e. we would like
√
Var(Z) ≪ ( 1+4ϵ2

k − 1
k ).

2.1 Simple but non-optimal upper bound for variance

Var(Z) = E[Z2]− E[Z]2 (12)

We already have EZ = ||p||22, so EZ2 = ||p||42. We need a manageable expression for E[Z2].

E[Z2] =
1(
n
2

)2E[ ∑
1≤s<t≤n

∑
1≤s′<t′≤n

1(Xs = Xt)1(X
′
s = X ′

t)
]

(13)

=
1(
n
2

)2 ∑
1≤s<t≤n

∑
1≤s′<t′≤n

E[1(Xs = Xt)1(X
′
s = X ′

t)] (14)

(15)

(14) : By Linearity of expectation. Now looking at all those indices in that awkward-looking
expression E[1(Xs = Xt)1(X

′
s = X ′

t)], we can group them into 3 categories based on the cardinality
of the set {s, t, s′, t′} (1) When all the indices are distinct (2) When both pairs are the same (3) When
there are 3 distinct indices. Additionally, we will only need to consider the events when the product
of the two terms is 1.

1. s, t, s′, t′ are all distinct i.e. |{s, t, s′, t′}| = 4. Therefore the two collisions are independent of
each other. Therefore we get E[1(Xs = Xt)1(X

′
s = X ′

t)] = ||p||42. There are
(
n
2

)(
n−2
2

)
= 6

(
n
4

)
ways to select pairs such they are distinct.

2. s = s′ and t = t′ i.e. both pairs are the same |{s, t, s′, t′}| = 2, as the square of an indicator
function is just the value of the indicator we have E[1(Xs = Xt)1(X

′
s = X ′

t)] = ||p||22. There are(
n
2

)
ways of selecting 2 unique indices.
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3. Finally the mankiest event, where we have |{s, t, s′, t′}| = 3. Three distinct indices will take up
the same value and one of the pairs will have a repeat index. This is the same as saying 3 items
will collide and the probability of having 3 collisions is ||p||33. There are

(
n
3

)
ways of picking three

distinct indices. Then for each of those three indices, there are 2 choices for which the remaining
index is duplicated. Thus the total number of options is (2× 3)

(
n
3

)
. Also by the monotonicity of

norms, we have ||p||33 ≤ ||p||32 which we will use below.

Thus we have

Var(Z) =

[
1(
n
2

)2 ∑
1≤s<t≤n

∑
1≤s′<t′≤n

E[1(Xs = Xt)1(X
′
s = X ′

t)]

]
− E[Z]2 (16)

=
1(
n
2

)2
[
6

(
n

4

)
||p||42 +

(
n

2

)
||p||22 + 6

(
n

3

)
||p||33

]
−
(
n
2

)2(
n
2

)2 ||p||42 (17)

=
1(
n
2

)2
[
||p||42

(
6

(
n

4

)
−
(
n

2

)2
)

+

(
n

2

)
||p||22 + 6

(
n

3

)
||p||33

]
(18)

≤ 1(
n
2

)2
[
||p||42

(
6

(
n

4

)
−
(
n

2

)2
)

+

(
n

2

)
||p||22 + 6

(
n

3

)
||p||32

]
(19)

≤ 1(
n
2

)2
[(

n

2

)
||p||22 + 6

(
n

3

)
||p||32

]
(20)

=
1(
n
2

)2
[(

n

2

)
E[Z] + 6

(
n

3

)
E[Z]3/2

]
(21)

≤ O(
1

n2
)E[Z] +O(

1

n
)E[Z]3/2 (22)

(19): Montonicity, ||p||33 ≤ ||p||32

(20)

(
6
(
n
4

)
−
(
n
2

)2) ≤ 0, for n ≥ 2

(22): 4
n2 ≥ 1

(n2)
and

Plugging this into (11) we have

P
[
|Z − E[Z]| ≤ ϵ2E[Z]

]
≤

O( 1
n2 )E[Z] +O( 1n )E[Z]3/2

ϵ4E[Z]2
(23)

=
1

ϵ4n2E[Z]
+

1

ϵ4nE[Z]1/2
(24)

≤ k

ϵ4n2
+

√
k

ϵ4n
(25)

(25): E[Z] ≥ 1
k for both cases.

Setting (25) equal to 1/3 and solving for n we get

n ≥ O(

√
k

ϵ4
) (26)

2.2 Optimal Upper Bound

Unfortunately, this bound can be improved to

n ≥ O(

√
k

ϵ2
) (27)
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Thus we must account for some slack in the analysis for variance. Thus going back to our analysis
where we kicked out the negative term

(
n

2

)2

Var(Z) =

[
||p||42

(
6

(
n

4

)
−
(
n

2

)2
)

+

(
n

2

)
||p||22 + 6

(
n

3

)
||p||33

]
(28)

=

[
||p||42

(
− 6

(
n

3

)
−
(
n

2

))
+

(
n

2

)
||p||22 + 6

(
n

3

)
||p||33

]
(29)

=

(
n

2

)
||p||22(1− ||p||22) + 6

(
n

3

)
(||p||33 − ||p||24) (30)

(29) :
(
n
2

)2
= 6
(
n
4

)
+ 6
(
n
3

)
+
(
n
2

)
The first summand is the variance of a binomial distribution with parameters Bin(

(
n
2

)
, ||p||22) and

the second summand is always non-negative (where the middle inequality comes from cauchy-schwartz)

||p||42 =

(∑
i

p(i)3/2p(i)1/2

)2

≤
∑
i

p(i)3
∑
i

p(i) =
∑
i

p(i)3 = ||p||33 (31)

Thus going back to our variance analysis and dividing both sides by
(
n
2

)2
we get

Var(Z) =
1(
n
2

)2
[(

n

2

)
||p||22(1− ||p||22) + 6

(
n

3

)
(||p||33 − ||p||24)

]
(32)

≤ 1(
n
2

)2
[(

n

2

)
||p||22 + 6

(
n

3

)
(||p||33 − ||p||24)

]
(33)

≤ O(
1

n2
)||p||22 +O(

1

n
)
(
||p||33 − ||p||24

)
(34)

Now if p = Uk, then Var(Z) = O( 1
n2 )E[Z] since ||p||33 = ||p||24, thus plugging it back to (11), we get

P [Z ≥ τ ] ≤ P
[
Z ≥ (1 + ϵ2)E[Z]

]
≤ k

n2ϵ4
(35)

Setting the RHS of (35) equal to 1/3 we get

n ≥ O(

√
k

ϵ2
) (36)

Okay but this only solves the case for Type I error, we still need to deal with the case that

dTV (p, Uk) ≥ ϵ. Define α2 := k||p− Uk||22 ≥ 4ϵ2, then E[Z1] =
1+α2

k .

P [Z ≤ τ ] = P [Z ≤ 1 + 2ϵ2

k
] (37)

= P
[
Z ≤ 1 + 2ϵ2

1 + α2
E[Z]

]
(38)

= P
[
Z ≤

(
1− α2 − 2ϵ2

1 + α2

)
E[Z]

]
(39)

≤ P
[
Z ≤

(
1− α2

2(1 + α2)

)
E[Z]

]
(40)

≤ Var(Z)

α4E[Z]2
4(1 + α2)2 (41)

≤ 16(1 + α2)2

α4E[Z]2
E[Z]

n2
+

16(1 + α2)2

α4nE[Z]2

(
||p||33 − ||p||24

)
(42)
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(38): How we defined α, (39): By the assumption that p is far from Uk, (40): α
2 ≥ 4ϵ2

Dealing with the left summand first. We have E[Z] = 1+α2

k . Thus we get

16(1 + α2)2

α4E[Z]2
E[Z]

n2
=

16(1 + α2)k

α4n2
≤ 5k

ϵ4n2
(43)

(43): For x > 0, 1+x
x2 is decreasing function. Furthermore α2 ≥ 4ϵ2 and ϵ ≤ 1, thus 1 + 4ϵ ≤ 5

Ok so the one last thing to show is the last summand 4
nE[Z]2

(
||p||33 − ||p||24

)
and then we would be

done. As ||p||22 ≥ 1
k we have

(
||p||33 − ||p||24

)
≤ ||p− Uk + Uk||33 −

1

k2
(44)

= ||p− Uk||33 +
3

k
||p− u||22 (45)

≤ ||p− Uk||32 +
3

k
||p− u||22 (46)

=
α3

k3/2
+

3α2

k2
(47)

Finally, multiplying it with 16(1+α2)2

nα4||p||42

16(1 + α2)2

nα4||p||42

(
||p||33 − ||p||24

)
≤ 16(1 + α2)2

nα4||p||42
α3

k3/2
+

3α2

k2
(48)

≤ 8
√
k

ϵn
+

12

nϵ2
(49)

Combining the two summands, we get

n ≥ O(

√
k

ϵ2
) (50)
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