Non-Private Uniformity and Identity Testing

Ari

September 20, 2022

Abstract

Re-deriving well-known results in Uniformity Testing

1 Problem Statement

These notes are derived from the excellent survey by Clement Canonne [Can22]. We have n i.i.d samples from an unknown distribution $p \in \texttt{Simplex}(k)$. We want to guess whether $p = U_k$ or $d_{TV}(p, U_k) \ge \epsilon$, where U_k is the uniform distribution over Simplex(k). Furthermore, we would like to guess correctly at least two-thirds of the time i.e.

$$\mathbb{P}\left[\text{Guess } p = U_k | p = U_k\right] \ge \frac{2}{3} \tag{1}$$

$$\mathbb{P}\left[\text{Guess } d_{TV}(p, U_k) \ge \epsilon | d_{TV}(p, U_k) \ge \epsilon\right] \ge \frac{2}{3}$$
 (2)

To guess we need to design some kind of test, that takes as input the parameters k, ϵ and the i.i.d samples and spits out a guess. One very natural test is to count how many of the samples are the same. If the distribution was truly uniformly random, we do not expect to see a lot of overlap between the samples. Before describing the test in the next section we state some general facts about norms and distances.

$$d_{TV}(p,q) = \frac{1}{2}||p-q||_1 \le \frac{\sqrt{k}}{2}||p-q||_2 \tag{3}$$

The proof for (3) comes from Cauchy-Schwartz and can be found in any linear algebra textbook under the title "equivalence of norms". Thus if we have $d_{TV}(p,q) \ge \epsilon$, then we have $||p-q||_2 \ge \frac{4\epsilon^2}{k}$. Furthermore, if $q = U_k$, then we have $||p-U_k||_2^2 = ||p||_2^2 - \frac{1}{k}$. Thus combining all these facts we have

- If $d_{TV}(p, U_k) = 0$, then $||p||_2^2 = \frac{1}{k}$
- Otherwise, $d_{TV}(p, U_k) \ge \epsilon$, then $||p||_2^2 \ge \frac{1+4\epsilon^2}{k}$

Note that $||p||_k^k$ is also called the collision probability of k samples drawn from p having the same value.

2 Tester Based on Collisions

Let X_1, \ldots, X_n represent n i.i.d samples from p. Let Z denote the number of pairwise collisions i.e

$$Z = \frac{1}{\binom{n}{2}} \sum_{1 \le s \le t \le n} \mathbb{1}(X_s = X_t)$$
 (4)

Z represents the fraction of pairwise collisions as a sum of i.i.d indicators and $\mathbb{P}\left[\mathbb{1}(X_s = X_t)\right] = \mathbb{E}[\mathbb{1}(X_s = X_t)] = ||p||_2^2$. Therefore $\mathbb{E}[Z] = ||p||_2^2$. The obvious test is to pick some threshold τ such that if $Z \leq \tau$, declare that $p = U_k$ and $d_{TV}(p, U_k) \geq \epsilon$ otherwise. Say we pick a threshold between $\frac{1}{k}$

and $\frac{1+4\epsilon^2}{k}$, so $\text{say}\tau = \frac{1+2\epsilon^2}{k}$. Then we want to know how many samples we need for equations (1) and (2) to hold.

We need to bound Type I and Type II errors to upper-bound the probability of making a mistake. To upper bound Type I error (or completeness error) we have that the data comes from the uniform distribution but our test threshold still crossed τ , so we need to upper bound the following.

$$\mathbb{P}\left[Z \ge \tau | p = U_k\right] = \mathbb{P}\left[Z \ge \frac{1 + 2\epsilon^2}{k}\right] \tag{5}$$

$$= \mathbb{P}\left[Z \ge (1 + 2\epsilon^2)\mathbb{E}[Z]\right] \tag{6}$$

$$\leq \mathbb{P}\left[Z \geq (1 + \epsilon^2)\mathbb{E}[Z]\right] \tag{7}$$

We drop the conditional from (5) onwards to make the notation clearer. (6) comes from the assumption that $p = U_k$. To upper bound Type II error, we need upper bound the following quantity

$$\mathbb{P}\left[Z \le \tau | d_{TV}(p, U_k) \ge \epsilon\right] = \mathbb{P}\left[Z \le \frac{1 + 2\epsilon^2}{k}\right] \tag{8}$$

$$\leq \mathbb{P}\left[Z \leq \frac{(1 - \epsilon^2)(1 + 4\epsilon^2)}{k}\right] \tag{9}$$

$$\leq \mathbb{P}\left[Z \leq (1 - \epsilon^2)\mathbb{E}[Z]\right] \tag{10}$$

(9) comes from the fact that when $\epsilon \leq \frac{1}{2}$, we have $(1 - \epsilon^2)(1 + 4\epsilon^2) \geq (1 + 2\epsilon^2)$. (10) comes from the fact that $\mathbb{E}[Z] \geq \frac{(1+4\epsilon^2)}{k}$ from our assumption. Thus if we combined equation (10) and (7) and applied Chebychev we would get

$$\mathbb{P}\left[|Z - \mathbb{E}[Z]| \le \epsilon^2 \mathbb{E}[Z]\right] \le \frac{\operatorname{Var}(Z)}{\epsilon^4 \mathbb{E}[Z]^2} \tag{11}$$

If the variance of the estimator is much larger than the wiggle room we've given us, then we would have no hope i.e. we would like $\sqrt{\operatorname{Var}(Z)} \ll (\frac{1+4\epsilon^2}{k} - \frac{1}{k})$.

2.1 Simple but non-optimal upper bound for variance

$$Var(Z) = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2 \tag{12}$$

We already have $EZ = ||p||_2^2$, so $EZ^2 = ||p||_2^4$. We need a manageable expression for $\mathbb{E}[Z^2]$.

$$\mathbb{E}[Z^2] = \frac{1}{\binom{n}{2}^2} \mathbb{E}\Big[\sum_{1 \le s < t \le n} \sum_{1 \le s' < t' \le n} \mathbb{1}(X_s = X_t) \mathbb{1}(X_s' = X_t') \Big]$$
(13)

$$= \frac{1}{\binom{n}{2}^2} \sum_{1 \le s < t \le n} \sum_{1 \le s' < t' \le n} \mathbb{E}[\mathbb{1}(X_s = X_t) \mathbb{1}(X_s' = X_t')]$$
(14)

(15)

- (14): By Linearity of expectation. Now looking at all those indices in that awkward-looking expression $\mathbb{E}[\mathbb{1}(X_s=X_t)\mathbb{1}(X_s'=X_t')]$, we can group them into 3 categories based on the cardinality of the set $\{s,t,s',t'\}$ (1) When all the indices are distinct (2) When both pairs are the same (3) When there are 3 distinct indices. Additionally, we will only need to consider the events when the product of the two terms is 1.
 - 1. s, t, s', t' are all distinct i.e. $|\{s, t, s', t'\}| = 4$. Therefore the two collisions are independent of each other. Therefore we get $\mathbb{E}[\mathbb{1}(X_s = X_t)\mathbb{1}(X_s' = X_t')] = ||p||_2^4$. There are $\binom{n}{2}\binom{n-2}{2} = 6\binom{n}{4}$ ways to select pairs such they are distinct.
 - 2. s = s' and t = t' i.e. both pairs are the same $|\{s, t, s', t'\}| = 2$, as the square of an indicator function is just the value of the indicator we have $\mathbb{E}[\mathbb{1}(X_s = X_t)\mathbb{1}(X_s' = X_t')] = ||p||_2^2$. There are $\binom{n}{2}$ ways of selecting 2 unique indices.

3. Finally the mankiest event, where we have $|\{s,t,s',t'\}|=3$. Three distinct indices will take up the same value and one of the pairs will have a repeat index. This is the same as saying 3 items will collide and the probability of having 3 collisions is $||p||_3^3$. There are $\binom{n}{3}$ ways of picking three distinct indices. Then for each of those three indices, there are 2 choices for which the remaining index is duplicated. Thus the total number of options is $(2 \times 3)\binom{n}{3}$. Also by the monotonicity of norms, we have $||p||_3^3 \le ||p||_2^3$ which we will use below.

Thus we have

$$Var(Z) = \left[\frac{1}{\binom{n}{2}^2} \sum_{1 \le s < t \le n} \sum_{1 \le s' < t' \le n} \mathbb{E}[\mathbb{1}(X_s = X_t) \mathbb{1}(X_s' = X_t')] \right] - \mathbb{E}[Z]^2$$
 (16)

$$= \frac{1}{\binom{n}{2}^2} \left[6\binom{n}{4} ||p||_2^4 + \binom{n}{2} ||p||_2^2 + 6\binom{n}{3} ||p||_3^3 \right] - \frac{\binom{n}{2}^2}{\binom{n}{2}^2} ||p||_2^4$$
 (17)

$$= \frac{1}{\binom{n}{2}^2} \left[||p||_2^4 \left(6\binom{n}{4} - \binom{n}{2}^2 \right) + \binom{n}{2} ||p||_2^2 + 6\binom{n}{3} ||p||_3^3 \right]$$
 (18)

$$\leq \frac{1}{\binom{n}{2}^2} \left[||p||_2^4 \left(6\binom{n}{4} - \binom{n}{2}^2 \right) + \binom{n}{2} ||p||_2^2 + 6\binom{n}{3} ||p||_2^3 \right] \tag{19}$$

$$\leq \frac{1}{\binom{n}{2}^2} \left[\binom{n}{2} ||p||_2^2 + 6 \binom{n}{3} ||p||_2^3 \right] \tag{20}$$

$$= \frac{1}{\binom{n}{2}^2} \left[\binom{n}{2} \mathbb{E}[Z] + 6 \binom{n}{3} \mathbb{E}[Z]^{3/2} \right] \tag{21}$$

$$\leq O(\frac{1}{n^2})\mathbb{E}[Z] + O(\frac{1}{n})\mathbb{E}[Z]^{3/2}$$
 (22)

(19): Montonicity, $||p||_3^3 \le ||p||_2^3$

(20)
$$\left(6\binom{n}{4} - \binom{n}{2}^2\right) \le 0$$
, for $n \ge 2$

(22):
$$\frac{4}{n^2} \ge \frac{1}{\binom{n}{2}}$$
 and

Plugging this into (11) we have

$$\mathbb{P}\left[|Z - \mathbb{E}[Z]| \le \epsilon^2 \mathbb{E}[Z]\right] \le \frac{O(\frac{1}{n^2}) \mathbb{E}[Z] + O(\frac{1}{n}) \mathbb{E}[Z]^{3/2}}{\epsilon^4 \mathbb{E}[Z]^2}$$
(23)

$$=\frac{1}{\epsilon^4 n^2 \mathbb{E}[Z]} + \frac{1}{\epsilon^4 n \mathbb{E}[Z]^{1/2}} \tag{24}$$

$$\leq \frac{k}{\epsilon^4 n^2} + \frac{\sqrt{k}}{\epsilon^4 n} \tag{25}$$

(25): $\mathbb{E}[Z] \ge \frac{1}{k}$ for both cases.

Setting (25) equal to 1/3 and solving for n we get

$$n \ge O(\frac{\sqrt{k}}{\epsilon^4}) \tag{26}$$

2.2 Optimal Upper Bound

Unfortunately, this bound can be improved to

$$n \ge O(\frac{\sqrt{k}}{\epsilon^2}) \tag{27}$$

Thus we must account for some slack in the analysis for variance. Thus going back to our analysis where we kicked out the negative term

$$\binom{n}{2}^{2} \operatorname{Var}(Z) = \left[||p||_{2}^{4} \left(6 \binom{n}{4} - \binom{n}{2}^{2} \right) + \binom{n}{2} ||p||_{2}^{2} + 6 \binom{n}{3} ||p||_{3}^{3} \right]$$
 (28)

$$= \left[||p||_2^4 \left(-6\binom{n}{3} - \binom{n}{2} \right) + \binom{n}{2} ||p||_2^2 + 6\binom{n}{3} ||p||_3^3 \right]$$
 (29)

$$= \binom{n}{2} ||p||_2^2 (1 - ||p||_2^2) + 6 \binom{n}{3} (||p||_3^3 - ||p||_4^2)$$
(30)

$$\binom{29}{2}$$
: $\binom{n}{2}^2 = 6\binom{n}{4} + 6\binom{n}{3} + \binom{n}{2}$

The first summand is the variance of a binomial distribution with parameters $Bin(\binom{n}{2}, ||p||_2^2)$ and the second summand is always non-negative (where the middle inequality comes from cauchy-schwartz)

$$||p||_2^4 = \left(\sum_i p(i)^{3/2} p(i)^{1/2}\right)^2 \le \sum_i p(i)^3 \sum_i p(i) = \sum_i p(i)^3 = ||p||_3^3$$
(31)

Thus going back to our variance analysis and dividing both sides by $\binom{n}{2}^2$ we get

$$\operatorname{Var}(Z) = \frac{1}{\binom{n}{2}^2} \left[\binom{n}{2} ||p||_2^2 (1 - ||p||_2^2) + 6 \binom{n}{3} (||p||_3^3 - ||p||_4^2) \right]$$
(32)

$$\leq \frac{1}{\binom{n}{2}^2} \left[\binom{n}{2} ||p||_2^2 + 6 \binom{n}{3} (||p||_3^3 - ||p||_4^2) \right]$$
(33)

$$\leq O(\frac{1}{n^2})||p||_2^2 + O(\frac{1}{n})\Big(||p||_3^3 - ||p||_4^2\Big) \tag{34}$$

Now if $p = U_k$, then $Var(Z) = O(\frac{1}{n^2})\mathbb{E}[Z]$ since $||p||_3^3 = ||p||_4^2$, thus plugging it back to (11), we get

$$\mathbb{P}\left[Z \ge \tau\right] \le \mathbb{P}\left[Z \ge (1 + \epsilon^2)\mathbb{E}[Z]\right] \le \frac{k}{n^2 \epsilon^4} \tag{35}$$

Setting the RHS of (35) equal to 1/3 we get

$$n \ge O(\frac{\sqrt{k}}{\epsilon^2}) \tag{36}$$

Okay but this only solves the case for Type I error, we still need to deal with the case that $d_{TV}(p, U_k) \ge \epsilon$. Define $\alpha^2 := k||p - U_k||_2^2 \ge 4\epsilon^2$, then $\mathbb{E}[Z_1] = \frac{1+\alpha^2}{k}$.

$$\mathbb{P}\left[Z \le \tau\right] = \mathbb{P}\left[Z \le \frac{1 + 2\epsilon^2}{k}\right] \tag{37}$$

$$= \mathbb{P}\left[Z \le \frac{1 + 2\epsilon^2}{1 + \alpha^2} \mathbb{E}[Z]\right] \tag{38}$$

$$= \mathbb{P}\left[Z \le \left(1 - \frac{\alpha^2 - 2\epsilon^2}{1 + \alpha^2}\right) \mathbb{E}[Z]\right] \tag{39}$$

$$\leq \mathbb{P}\left[Z \leq \left(1 - \frac{\alpha^2}{2(1 + \alpha^2)}\right) \mathbb{E}[Z]\right] \tag{40}$$

$$\leq \frac{\operatorname{Var}(Z)}{\alpha^4 \mathbb{E}[Z]^2} 4(1 + \alpha^2)^2 \tag{41}$$

$$\leq \frac{16(1+\alpha^2)^2}{\alpha^4 \mathbb{E}[Z]^2} \frac{\mathbb{E}[Z]}{n^2} + \frac{16(1+\alpha^2)^2}{\alpha^4 n \mathbb{E}[Z]^2} \left(||p||_3^3 - ||p||_4^2 \right) \tag{42}$$

(38): How we defined α , (39): By the assumption that p is far from U_k , (40): $\alpha^2 \geq 4\epsilon^2$ Dealing with the left summand first. We have $\mathbb{E}[Z] = \frac{1+\alpha^2}{k}$. Thus we get

$$\frac{16(1+\alpha^2)^2}{\alpha^4 \mathbb{E}[Z]^2} \frac{\mathbb{E}[Z]}{n^2} = \frac{16(1+\alpha^2)k}{\alpha^4 n^2} \le \frac{5k}{\epsilon^4 n^2}$$
(43)

(43): For x > 0, $\frac{1+x}{x^2}$ is decreasing function. Furthermore $\alpha^2 \ge 4\epsilon^2$ and $\epsilon \le 1$, thus $1+4\epsilon \le 5$ Ok so the one last thing to show is the last summand $\frac{4}{n\mathbb{E}[Z]^2} \left(||p||_3^3 - ||p||_4^2\right)$ and then we would be done. As $||p||_2^2 \ge \frac{1}{k}$ we have

$$\left(||p||_{3}^{3} - ||p||_{4}^{2}\right) \le ||p - U_{k} + U_{k}||_{3}^{3} - \frac{1}{k^{2}}$$

$$\tag{44}$$

$$= ||p - U_k||_3^3 + \frac{3}{k}||p - u||_2^2 \tag{45}$$

$$\leq ||p - U_k||_2^3 + \frac{3}{k}||p - u||_2^2 \tag{46}$$

$$= \frac{\alpha^3}{k^{3/2}} + \frac{3\alpha^2}{k^2} \tag{47}$$

Finally, multiplying it with $\frac{16(1+\alpha^2)^2}{n\alpha^4||p||_2^4}$

$$\frac{16(1+\alpha^2)^2}{n\alpha^4||p||_2^4} \left(||p||_3^3 - ||p||_4^2\right) \le \frac{16(1+\alpha^2)^2}{n\alpha^4||p||_2^4} \frac{\alpha^3}{k^{3/2}} + \frac{3\alpha^2}{k^2}$$
(48)

$$\leq \frac{8\sqrt{k}}{\epsilon n} + \frac{12}{n\epsilon^2} \tag{49}$$

Combining the two summands, we get

$$n \ge O(\frac{\sqrt{k}}{\epsilon^2}) \tag{50}$$

References

[Can22] Clément L. Canonne. Topics and Techniques in Distribution Testing: A Biased but Representative Sample. March 2022.