Non-Private Uniformity and Identity Testing

Ari
September 20, 2022

Abstract

Re-deriving well-known results in Uniformity Testing

1 Problem Statement

These notes are derived from the excellent survey by Clement Canonne [Can22]. We have n i.i.d samples
from an unknown distribution p € Simplex(k). We want to guess whether p = Uy or dry (p,Uk) > €,
where Uy, is the uniform distribution over Simplex(k). Furthermore, we would like to guess correctly
at least two-thirds of the time i.e.

P |Guess p = Ug|p = Uk] > (1)

(2)

WD Wl N

P |Guess drv (p, Ux) > e|drv (p, Up) > 6] >

To guess we need to design some kind of test, that takes as input the parameters k, e and the i.i.d
samples and spits out a guess. One very natural test is to count how many of the samples are the
same. If the distribution was truly uniformly random, we do not expect to see a lot of overlap between
the samples. Before describing the test in the next section we state some general facts about norms
and distances.

1 VEk
dTv(p,q)=§llp—q||1STIIp—qHz (3)

The proof for (3) comes from Cauchy-Schwartz and can be found in any linear algebra textbook

under the title “equivalence of norms”. Thus if we have dry (p,q) > €, then we have ||p — ql||2 > %.
Furthermore, if ¢ = Uy, then we have ||p — Ux||3 = ||p||3 — . Thus combining all these facts we have

o If dry (p,Ux) =0, then [|p|[3 = +

e Otherwise, drv (p, Ux) > €, then ||p||3 > 1*,;162

Note that ||p||¥ is also called the collision probability of k samples drawn from p having the same
value.

2 Tester Based on Collisions

Let X1,..., X, represent n i.i.d samples from p. Let Z denote the number of pairwise collisions i.e
1
7= > X=Xy (4)
(2) 1<s<t<n

Z represents the fraction of pairwise collisions as a sum of i.i.d indicators and P [1(X,; = X;)] =

E[1(Xs; = X;)] = ||p||3. Therefore E[Z] = ||p||3. The obvious test is to pick some threshold T such

that if Z < 7, declare that p = Uy and dry (p,Ux) > € otherwise. Say we pick a threshold between %



1+4é2 —
and ——, so sayT =

(2) to hold.

We need to bound Type I and Type II errors to upper-bound the probability of making a mistake.
To upper bound Type I error (or completeness error) we have that the data comes from the uniform
distribution but our test threshold still crossed 7, so we need to upper bound the following.

#. Then we want to know how many samples we need for equations (1) and

P[Z>T|p:Uk} ZP{ZZ 1+k262} (5)
— [z > (1+ 262)E[Z]:| (6)
<p [Z >(1+ eQ)E[Z}] (7)

We drop the conditional from (5) onwards to make the notation clearer. (6) comes from the
assumption that p = Uy. To upper bound Type II error, we need upper bound the following quantity

P [Z < 7ldrv(p,Ux) > 6} =P [Z < ! +k2€2} (8)
SP[ZS (1—62)](€1+4€2):| 9)
<P[Z2<(1-EZ] (10)

(9) comes from the fact that when € < %, we have (1 — €2)(1 + 4€2) > (1 + 2€2). (10) comes from
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the fact that E[Z] > % from our assumption. Thus if we combined equation (10) and (7) and

applied Chebychev we would get

Var(Z)
Z-E[Z <2EZ}<7 11
P|12 - B[2]| < B2 < S (11)
If the variance of the estimator is much larger than the wiggle room we’ve given us, then we would

have no hope i.e. we would like \/Var(Z) < (# -2

2.1 Simple but non-optimal upper bound for variance
Var(Z) = E[Z?] — E[Z]? (12)
We already have EZ = ||p||3, so EZ? = ||p||3- We need a manageable expression for E[Z?].

B2 =B Y Y 1 = X)u(X, = X)) (13)

n
2) 1<s<t<n 1<s’'<t'<n

LYY EE(Y, = X)X, = X)) (14)

(15)

(14) : By Linearity of expectation. Now looking at all those indices in that awkward-looking
expression E[1(X, = X;)1(X, = X])], we can group them into 3 categories based on the cardinality
of the set {s,t,s',¢'} (1) When all the indices are distinct (2) When both pairs are the same (3) When
there are 3 distinct indices. Additionally, we will only need to consider the events when the product
of the two terms is 1.

1. s,t,8,t" are all distinct i.e. |{s,t,s',t'}| = 4. Therefore the two collisions are independent of
each other. Therefore we get E[1(X, = X;)1(X. = X])] = ||p||3. There are (3)("3°) = 6(})
ways to select pairs such they are distinct.

2. s = ¢ and t =t/ i.e. both pairs are the same |{s,t,s',t'}| = 2, as the square of an indicator
function is just the value of the indicator we have E[1(Xs = X;)1(X. = X])] = ||p||3. There are
(g) ways of selecting 2 unique indices.



3. Finally the mankiest event, where we have |{s,t,s’,t'}| = 3. Three distinct indices will take up
the same value and one of the pairs will have a repeat index. This is the same as saying 3 items
will collide and the probability of having 3 collisions is |[p||3. There are (;) ways of picking three
distinct indices. Then for each of those three indices, there are 2 choices for which the remaining
index is duplicated. Thus the total number of options is (2 x 3) (g) Also by the monotonicity of
norms, we have |[p||3 < ||p||3 which we will use below.

Thus we have

Var(2) = (,})2 S ER(X = X)X, - Xt')]] ~E[2)? (16)
2 1<s<t<n 1<s’'<t’'<n
1 | (n 4 n 2 n 3 (2)2 4
- o (3ot + (3wt () o e (17)
- _||p|§<6(j) () ) + ()l +6(§)|p|§] (18)
<oy _||p|;*<6(j) -(5) ) +(5) iz +6(§)|p|§] (19)
1 [/n 9 n
< e (3t +o () e0)
1 [/n n 9
= o _<2>E[Z] +6(3>]E[Z]3/ (21)
< O(—)E(Z] + O(- B[ Z]? (2)
(19): Montonicity, ||p|[3 < [pl[3
(20) (6(2) - (3)2> <0, forn > 2
(22): % > ﬁ and
Plugging this into (11) we have
P [|Z — ]E[Z” < EQE[Z}] < 0(732)E[Z€]4£[2](2}L)E[Z]3/2 (23)
1 1
- e‘n’E[Z] i e‘nE[Z]1/2 (24)
ko vk
< T (25)
(25): E[Z] > 4 for both cases.
Setting (25) equal to 1/3 and solving for n we get
n > O(g) (26)
2.2 Optimal Upper Bound
Unfortunately, this bound can be improved to
n > O(\/—QE) (27)

€



Thus we must account for some slack in the analysis for variance. Thus going back to our analysis
where we kicked out the negative term

(Z)Qw(z): ||p||§< Z 2) +( ||p|2+6( >||p||g] (28)
[Ilsz( ’;)) + (5 )i+ o )|p||3] (29)

= (5 )1t = i)+ o) s — i) (30)
(29): (3)"=6(3) +6(3) + (5)

The first summand is the variance of a binomial distribution with parameters Bin((3}), [|p||3) and
the second summand is always non-negative (where the middle inequality comes from cauchy-schwartz)

Ipll = (Zm‘)m 1“) < X000 Eooli) = 0000 = ol (31)

Thus going back to our variance analysis and dividing both sides by (3)2 we get

Varl2) = o [(Z) ol = 11+ o5 ) ol - ||p||i>] (32)
<(j) l()llpllﬁfi()(lpls |p||i>] (33)
< 0ClIpl3 + o) (Il — sl (34)

Now if p = Uy, then Var(Z) = O(-%)E|[Z] since |[p||3 = ||p||, thus plugging it back to (11), we get

k
PIZ27]<P[Z2(1+EZ)] < (35)
Setting the RHS of (35) equal to 1/3 we get
n > O(\/—f) (36)

€

Okay but this only solves the case for Type I error, we still need to deal with the case that
drv (p,Ux) > €. Define o® := k||p — Ug||3 > 4¢?, then E[Z,] = %

1+ 262

PIZ<r]=P[2<— ] (37)
—p [Z < 11+2621E[Z]} (38)
-elz<(1- a1+_ j JELZ) (39)

P27 (1 g o B ()
< ;Z’EEZ)Q (1+a2)2 (41)
OO oL B O L (1l - 1) )



(38): How we defined «, (39): By the assumption that p is far from Uy, (10): o? > 4¢2
Dealing with the left summand first. We have E[Z] = # Thus we get

16(1+a?)?E[Z]  16(1 + a?)k _ 5k (43)
afE[Z]2 n?2  ain? ~ €*n?

(43): For x > 0, 1;’;” is decreasing function. Furthermore a? > 4€2 and € < 1, thus 1 +4e < 5

Ok so the one last thing to show is the last summand ﬁ (HpHg - ||p|\i) and then we would be

done. As |[p||3 > + we have

(Il ~ 1pI12) < llp — Uk + Ul ~ 15 (44)
= llp ~ ULl + 21lp — ul (45)
< llp ULl + > llp — w3 (16)
3 2
= gﬁ+3’% (47)
16(1+a?)?

Finally, multiplying it with

nat{[pl[3

16(1 + o?)? 16(1+a?)? o®  3a?
ﬁ(”pﬂg - HPH?L) TR T ey S (48)
no||pl[3 nodlplly & k
8Vk 12
Bk 12 (19)
en | ne
Combining the two summands, we get
k
nz 0(%E) (50)
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