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Given two distributions X0 and X1, The proof system is quite simple, the verifier samples from either X0 or
X1 and asks the prover to guess which one. This protocol is complete and sound with constant error, but the
problem is that we do not get negligible simulator deviation in the security parameter (just constant). So,
the entire work here is to review preliminary material to describe how to send the simulator deviation to
negligible. The key trick is the Polarisation lemma, which alternately applies repeated sampling 1 and XOR
sampling 2 .

1 Prelims

Fact 1 Given two vectors ~X and ~Y , ~X ⊗ ~Y represents their tensor product (outer prodct).

|| ~X ⊗ ~Y ||1 = || ~X||1 · ||~Y ||1

Fact 2 Let X = (X0, X1) be a joint distribution where X0 and X1 are independent. Similarly, define
Y = (Y0, Y1). Then we have

dTV(X,Y ) = dTV(X0, Y0) + dTV(X1, Y1) (1)

Proof.

dTV(X,Y ) =
1

2
|X0 ⊗X1 − Y0 ⊗ Y1| (2)

≤ 1

2
|X0 ⊗X1 − Y0 ⊗X1|+

1

2
|Y0 ⊗X1 − Y0 ⊗ Y1| (3)

=
1

2
|X1 ⊗ (X0 − Y0)|+ 1

2
|Y0 ⊗ (X1 − Y1)| (4)

=
1

2
|X1| |X0 − Y0|+

1

2
|Y0| |X1 − Y1| (5)

= dTV(X0, Y0) · 1 + 1 · dTV(X1, Y1) (6)

Equation (3) from the triangle inequality and the last equality comes as X1 and Y0 are discrete probability
distributions.

Lemma 1 (Direct Product Lemma) Let X and Y be distributions such that dTV(X,Y ) = δ. Then for all
k ∈ N, we have

1− 2exp(−kδ
2

2
) ≤ dTV(⊗kX,⊗kY ) ≤ kδ
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where ⊗kX denotes k independent samples of X.

Proof. The upper bound follows directly from Fact 2 by replacing X0 and X1 as i.i.d samples from X, likewise
with Y .

Let δ = dTV(X,Y ) and define S∗ as Pr[X ∈ S∗]−Pr[Y ∈ S∗] = δ. Let p = Pr[Y ∈ S∗], then Pr[X ∈ S∗] = p+δ.
Thus, here we have two Bernoulli random variables with mean p and p+ δ. By the Chernoff Bound (additive
version):

1. The probability that at most k(p+ δ
2 ) fraction of k samples like in S is equivalent to

Pr[
∑
i∈[k]

Xi ≤ k(p+
δ

2
)] = Pr[(

1

k

∑
i∈[k]

Xi)− (p+ δ) ≤ −δ
2

] (7)

≤ exp(−k
2
δ2) (8)

2. Similarly, the probability that at least k(p+ δ
2 ) fraction of k samples lie in S is at most exp(−k2 δ

2).
(This is just the other tail of the Chernoff bound, writing it out explicitly like above makes it pretty
obvious).

Pr[
∑
i∈[k]

Yi ≥ k(p+
δ

2
)] = Pr[(

1

k

∑
i∈[k]

Yi)− p ≥
δ

2
] (9)

≤ exp(−k
2
δ2) (10)

Define S′ as a set of all k-tuples such that:

S′ =
{

(z1, . . . , zk) ∈ ({0, 1}n)k : at least k(p+
δ

2
) fraction of samples, lie in S∗

}
Thus we have,

dTV(⊗kX,⊗kY ) ≥ Pr[⊗kX ∈ S′]− Pr[⊗kY ∈ S′] (11)

≥ 1− 2exp(−k
2
δ2) (12)

Equation (11) comes from the definition of statistical difference. Equation (12) come from Pr[⊗kY ∈ S′] ≤
exp(−k2 δ

2) as that is the definition of item 2. And Pr[⊗kX ∈ S′] ≥ 1− exp(−k2 δ
2) from the definition given

in item (1).

The Direct product lemma sends the YES instances to have a distance negligibly far from one at an exponential
rate. Still, it also blows up the soundness error for NO instances linearly (in the security parameter) close to
1. We need a way to send the YES instances to have a distance close to 1 and the NO instances to 0, both at
exponential rates. This is where the XOR lemma comes in.
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Lemma 2 (XOR Lemma) Given a pair of distributions X0, X1 ∈ ∆(Ωn) and k ∈ N as input, there exists a
polynomial time computable function that outputs a pair of distributions (Y0, Y1) such that

dTV(Y0, Y1) = dTV(X0, X1)k

Specifically, Y0, Y1 are defined as follows:

Y0: Uniformly select (b1, . . . , bk) ∈ {0, 1}k such that ⊕ki=1bi = 0, and set Y0 = (Xb1 ⊗ · · · ⊗Xbk).

Y1: Uniformly select (b1, . . . , bk) ∈ {0, 1}k such that ⊕ki=1bi = 1, and set Y1 = (Xb1 ⊗ · · · ⊗Xbk).

Proof. Prove the base case with k = 2. Then the rest follows from induction. Define ai such that all i ∈ [k],
we have ai ∈ {0, 1}.

Let X(1)
0 , X

(1)
1 , X

(2)
0 , X

(2)
1 be random variables such that

Z0 = X
(1)
a1 ⊗X

(2)
a2 such that a1 ⊕ a2 = 0

Z1 = X
(1)
a1 ⊗X

(2)
a2 such that a1 ⊕ a2 = 1

dTV(Z0, Z1) =
1

2
|Z0 − Z1|

=
1

2

∣∣∣∣12 [(X
(1)
0 ⊗X(2)

0 ) + (X
(1)
1 ⊗X(2)

1 )]− 1

2
[(X

(1)
1 ⊗X(2)

0 ) + (X
(1)
0 ⊗X(2)

1 )]

∣∣∣∣
=

1

4

∣∣∣(X(1)
0 −X(1)

1 )⊗ (X
(2)
0 −X(2)

1 )
∣∣∣

=
1

2
||X(1)

0 −X(1)
1 ||1 ·

1

2
||X(2)

0 −X(2)
1 ||1

= dTV(X
(1)
0 , X

(1)
1 ) dTV(X

(2)
0 , X

(2)
1 )

Induction assumption for k > 2, we have random variables {X(i)
0 }i∈[k] and {X

(i)
1 }i∈[k] and that

dTV(Z0, Z1) = dTV(X
(1)
0 , X

(1)
1 ) . . . dTV(X

(k)
0 , X

(k)
1 )

When we add variables X(k+1)
0 and X(k+1)

1 , and computing the statistical distance between Z0 and Z1 reduces
to the base case again as exactly half of the values will have parity 0 and a half will have parity 1. Thus the
lemma holds by induction.

Lemma 3 (Polarisation Lemma) Let α, β ∈ [0, 1] such that α2 > β. There is a PPT function Polariseα,β ,
that takes a triple (X0, X1, 1

κ), where X0 and X1 are distributions encoded by circuits, and outputs (Y0, Y1)

such that

dTV(X0, X1) ≥ α =⇒ dTV(Y0, Y1) ≥ 1− 2−k

dTV(X0, X1) ≤ β =⇒ dTV(Y0, Y1) ≤ 2−k

Proof. Let λ = min{α2/β, 2} > 1, and let l = dlogλ 4κe = O(log κ).

Apply the XOR lemma 2 to (X0, X1, 1
l) to get (X ′0, X

′
1) such that
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dTV(X0, X1) ≥ α =⇒ dTV(X
′
0, X

′
1) ≥ αl

dTV(X0, X1) ≤ β =⇒ dTV(X
′
0, X

′
1) ≤ βl

Let m = λl

2α2l ≤ 1
2βl . Notice m ≤ poly(κ), since l = O(log κ), and λ ≤ 2, and α ∈ [0, 1] is constant. Applying

the direct product lemma 1 we get X ′′0 = ⊗mX ′0 and X ′′1 = ⊗mX ′1.

dTV(X0, X1) ≥ α =⇒ dTV(X
′′
0 , X

′′
1 ) ≥ 1− 2exp

(
λl

2α2l
· (αl)2

2

)
≥ 1− 2e−κ

dTV(X0, X1) ≤ β =⇒ dTV(X
′
0, X

′
1) ≤ mβl ≤ (

1

2βl
)βl =

1

2

Apply the XOR lemma again to the triple (X ′′0 , X
′′
1 , 1

κ) such that

dTV(X0, X1) ≥ α =⇒ dTV(Y0, Y1) ≥ 1− 2κe−κ > 1− 2κ

dTV(X0, X1) ≤ β =⇒ dTV(Y0, Y1) ≤ 1

2κ

2 Main Result

Next we present the Statistical ZK Proof For SD.

Input: Circuits X0 and X1, and security param 1κ.
Set α = 2/3 and β = 1/3

1. Both prover and verifier compute (Y0, Y1) = Polariseα,β(X0, X1, 1
κ−1).

2. V: Select b $←− {0, 1}. Then sample x $←− Yb and send x to P.

3. P: If Pr[Y0 = x] > Pr[Y1 = x] send c = 0 to the verifier, otherwise send c = 1.

4. V: If c = b accept.

Next, we present the simulator.

Inputs: Polarised circuits Y0 and Y1

1. Sample b $←− {0, 1} and let x $←− Yb.

2. Let c = b

3. Output (x, c; b)

Fact 3 Let A and B be two discrete distributions on X . Let SA = {x ∈ X : Pr[A = x] > Pr[B = x]} and
SB = {x ∈ X : Pr[B = x] > Pr[A = x]}. Then
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dTV(A,B) = Pr[A ∈ SA]− Pr[B ∈ SB ] (13)

Lemma 4 When two distributions Y0 and Y1 have statistical difference δ, then the proof system above makes
the verifier accept with probability 1+δ

2 , and no prover strategy succeeds with greater probability. Thus, we
get soundness error 1+δ

2 . The simulator deviation of the simulator defined above is 1−δ
2 which is identical to

the completeness error.

Proof. Let
SX0

= {x ∈ {0, 1}n : Pr[X0 = x] > Pr[X1 = x]} and SX1
= {x ∈ {0, 1}n : Pr[X1 = x] > Pr[X0 = x]}.

Consider the verifier strategy, which gives the same distribution as the prescribed verifier strategy in the
proof system above.

1. Flip a coin d that is 0 with probability 1− δ and 1 with probability δ.

2. If d = 0, pick x ∈ {0, 1}n and b $←− {0, 1}.

3. If d = 1, pick b $←− {0, 1}, and then pick x $←− SXb

4. Output (b, x)

When d = 0, b is independent of x and provers success of probability is exactly 1
2 no matter what it does.

However, if a verifier sends to the prover x ∈ SX0
or x ∈ SX1

, it can predict xb with probability 1. So for the
prover gets the verifier to accept with probability

1

2
· Pr[d = 0] + 1 · Pr[d = 1] =

1

2
(1− δ) + δ =

1 + δ

2

Note that simulator deviation and completeness error are the same, as the simulator always guesses right. In
the real protocol, the fraction of times the prover guesses the verifiers challenge incorrectly, despite being
honest, is exactly the complement of the probability with which it gets the verifier to accept i.e. 1− 1+δ

2 = 1−δ
2 .

Now as the protocol is conducted on Y0, Y1 and not X0, X1, we are guaranteed that in the YES case, δ = 1−2κ,
thus the simulator deviation is 2−κ.
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