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1 The Goal

We have some promise problem IT = (IT"¢s, IIN°) and a public coin HVSZK proof system (P,V) for IT with
constant completeness and soundness error. Let Sim denote the simulator for the proof system described
above. Given x € TIY® UTIN®, Fix x = |z|, we want to use the output of the simulator Sim(1%,z)" to come up
with two distributions X and Y such that

rell™ = dp(X,Y) <

W =

rel° — dp(X,Y) >

[SCRN )

So when we write z — (X,Y) we mean that an HVSZK proof for IT Karp reduces to SD. Throughout this
document x = |z| is the security parameter, and v(x) denotes the number of messages the prescribed verifier

sends to the prover, where v is some polynomial.

1.1 Simulation As A Virtual Interaction

For honest verifier zero-knowledge proofs, simulation can be viewed as an interaction between the virtual
verifier and a virtual prover. The simulator is responsible for constructing the virtual verifier and virtual
prover. The virtual prover strategy (also called simulation-based prover) Pg;y, is constructed as follows:

Given an x € IIY® UTIN°, and a conversation history 7 (consisting of 2i messages exchanged between the
virtual prover and virtual verifier), Ps;, responds as follows:
e If Sim(x) outputs transcripts beginning with v with probability 0, then Pg;,, outputs L.

o Otherwise, Psin responds with 5 with probability pg where

pp = Pr[Sim(z)2i41 = (v, B)|Sim(2)2; = 7]
In simpler words, the virtual prover is simply the simulator pretending to be a real-world prover (but
without any of the computation resources of a real-world prover).

From the definition of HVSZK we get that if z € I1Y®, we must have both

"Henceforth, I’ll often drop the security parameter from the notation to make it cleaner and write Sim(1%, z) as
just Sim(x).
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1. The virtual verifier must accept with high probability (given by completeness).

2. The virtual verifier “behaves like” the real verifier (see below for a formal definition).

However, the definition of HVSZK does not say anything explicitly about the quality of simulation for 2 € TIN°.
Despite this, it is possible to show that at least one of the following must be true for No instances:

1. The virtual verifier must accept with low probability.

2. The virtual verifier must behave very differently from the real verifier.

Note that if both of these statements are false, we have a virtual prover that convinces the virtual verifier
with high probability. This virtual verifier is very close to the real verifier. Thus, if I swapped the virtual and
real verifier, we would break soundness as we have found a cheating prover strategy Ps;n that gets the verifier
to accept. Note that we have not yet technically defined what “behaves” as the real verifier means, but we do

so in the next section. In summary, this is the game

Given a simulator Sim for an HVSZK proof system for a promise problem IT and an instance x € II, our
goal is to construct distributions X and Y that enable us to distinguish between Yes and No using the
statistical difference problem.

1.2 The Behaviour Of The Virtual Verifier and The Real Verifier

Next, we formalise what it means for a virtual verifier to behave like a real verifier. Let v(x) denote the
number of messages the verifier sends to a real prover. For j < 2v(k) + 2, we refer to a tuple of strings

(m1,...,m;) as a conversation transcript if the even indexed messages correspond to the messages sent by
the verifier and the odd indices of messages represent messages sent by the prover. For i = 1,...,v(k) define
( 1\

Xi(z) : Let v & Sim(z) and let 2, denote the first 2i messages exchanged. Set X;(z) = 2.

(. J

( )
Yi(x) : Let & Sim(z) and let 75,1 denote the first 2i — 1 messages exchanged. Let [; represent a
polynomial which computes the number of public coins l;(x,v2,-1)“ the real verifier sends in message
round i. Let r < {0,1}%. Then set Y;(z) = (yai_1,7).

“We abuse notation to use l; to denote both the polynomial and the polynomial evaluation i.e. I; = l;(z, y2i—1).
| J

In X;, the i’th message is computed per the virtual verifier strategy defined by the Simulator. In Y;, the i’th
verifier message is chosen uniformly and independently of the history, like the real verifier would have done
when interacting with any arbitrary prover. Define §;(x) as

di(x) := SD(Xi(x),Yi(x)) (1)

and it quantifies how much the virtual verifier differs from the real verifier in computing the i’th message. If
d;(z) is small for all i = 1,...,v(k), then it implies that the virtual verifier behaves like the real verifier. If
this is the case and the virtual verifier accepts with high probability, then x € IIY®s. On the other hand, if the
virtual prover accepts with low probability z € TIN°.
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1.3 Key Technical Lemmas

We need a few technical lemmas before we can prove our final Karp Reduction in Section 2. Lemma 1 upper
bounds the difference between the real and virtual verifier in terms of the simulator deviation. If z € IIYes,
then the simulation deviation is small, and hence the virtual verifier is close to the real verifier.

Lemma 1 Let p = dry (Sim(x), view[(P, V) (:z:)]) be the simulator deviation from the view of the real

verifier in the HVSZK proof system (P, V) and v(x) be the number of messages the real verifier sends to

the prover P. For all i = 1,...,v(k) we have
di(w) <2 (2)
Proof. Dropping = from the notation we have
6; = dr(X;,Y;) (3)
< dry(Xi, (P,V)2,) + dw((P,V)2:,Y)) (4)

The last inequality comes from the triangle inequality. Note that X; is the same distribution as Simg,, and
thus

dTV(Xi7 (P7 V)QI) = (,‘Z'I‘\](Sil"rlgi7 (P7 V)gl) S dTv(Sim, (P7 V)) (5)

On the other hand Y; is obtained from Simy;_; and then concatenating /; random coins (mimicking what the
verifier would do for its ’th turn). If we did the same thing to (P, V)2;—1 we get (P,V)q,. Based on the fact
below, as we are applying the same random function on both distributions, we have

drv((P,V)2i,Yi) < dw((P,V)2i—1,Simg;_1) < dry(Sim, (P, V)) (6)

Combining (5) and (6) gives us our proof. O

Fact 1 For any two distributions A and B on X, any randomised procedure f on X, if we have

dry(f(A), f(B)) < dw(A, B)

In the Yes instances, Lemma 1 guarantees that the virtual and real behaviour is close (as u is small). This
also guarantees that the virtual verifier accepts with high probability (otherwise, it would not be similar to
the real verifier, which by the completeness property, accepts with high probability). Thus at this point, it
might be tempting to declare X = (X1(2),®... ® Xy(o)(z) and Y = (Y1(2) ® ..., @Y, (z) and claim we
are done. As x € I1Y® implies, that ZZJE) 8i(z) = dry(X,Y) < 20(k)p which is small (we will formalise how
small later).

However, this definition of X and Y does not quite handle the No instances as efficiently. The next lemma
relates closeness between the virtual and real verifier and the virtual verifier’s acceptance probability.
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( 1\
Lemma 2 Let p be the probability that Sim(z) outputs an accepting transcript, i.e. the virtual verifier

accepts. Let ¢ = maxg out[(P, V) = accept]

v(K)
p—q < du (view[(PSIm,V)(x)], Sim(:c)) =HPLACH (7)

Proof. We will prove this by induction. The base case for j = 0, by the definition of d; we get the distributions
are the same. Note for any j, we obtain (Pg;m, V)2;+1 by applying the same procedure to (Psim, V)a; as we do
by when we go from Simsy; to Simg;41. Thus by above fact

drv((Psim, V)2;+1,Sima;41) < dry((Psim, V)25, Sima;) (8)

Induction step. Assume dry((Psim,V)2;, Sima;) < Zgzo 0;.
drv((Psim, V)2;+2, Simaj12) = drv((Psim, V)2j+2, Xj+1) 9)
< drv((Psim, V)2j+2, Yj4+1) + drv((Psim, V) 2542, Yj41) (10)

(Psim; V)2j+2 obtained from (Psim, V)2;+1 by applying the same random process as how get Y from Simg; 1.
Thus,

dry((Psim, V)2;+2,Sima;+9) < dry((Psim, V)2;+1,Simajt1) + dry((Psim, V)2;+2, Yj11) (11)
< drv((Psim, V)25, Sima;) + drv((Psim, V)2j+2, Yj+1) (12)
J
< Z 0 +6; (13)
i=0
O

If z € TIN°, then ¢ < % (from soundness). Here p is the probability with which the virtual verifier accepts.
Thus, if p is high, it implies that p — ¢ is large; therefore, the virtual and real verifiers are not close, i.e.
dry(X,Y) is large as we desire. But what happens when p is small? Now we have no guarantees about
distance between X and Y as we desire. So clearly, the current definitions of the distributions is not enough.
Thus we define X’ = X ® Xo and Y’ =Y ® Y}, where

Xo: Output 1 always.
Ys: Run the simulator 216 log(v(k)) times and output the decision made by most virtual verifiers.

Now if x € 11", we want dry(Xo, Yo) to be small i.e. we want to upper bound the probability that Pr[Yy = 0].
Let w = 216log(v(k)) and Ay, ..., A, be the independent accept,/reject outputs of the simulator Sim(z). We
have

1 & 1
dry(Xo,Yo) = Pr[Yp = 0] = Prmajority(4y,...,4,) =0]=Pr p ZAj < 3
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When x € 11, from completeness and the definition of simulator deviation in zero knowledge, the simulator
must output accept with probability £ 2 _pie. for any j € [w], Pr[4; =1]=p> % — > % The maximum

deviation between Xy and Y, occurs When p= and thus we can re-write

ﬁ7
Iy, oL 1 « 701
— = — ) A< ——— 14
D I P SR e TRl T a9
j=1 j=1
<exp( 2w — (15)
< exp W Tom
1
< - 16
~ (12v)3 (16)
Equation (15) comes from the Chernoff bound described in Lemma 5.
2 Reducing To Statistical Closeness
Finally, we are ready to prove the final reduction.

Theorem 1 Let Sim be the simulator for an HVSZK proof system (P, V) for a promise problem II.
Let v = O(poly(k)) denote the number of messages the honest verifier sends to the prescribed prover,
and p < m“ denote the simulator deviation. Fix s = 4(12v)2?. Then there exists an algorithm
that constructs distributions ®°X’ and ®°Y”’, where X’ and Y’ are constructed in polynomial time as
defined above, such that

rell™ = dy(e°X,®°Y") < (17)

[SUUI R GUN

T € HNO — dTv(®sX/,®s}7/) > (].8)

“Note this automatically follows from the definition of zero knowledge which requires the deviation to typically
be negligible.

| J

Proof. We begin by proving the statement described in Equation (17). Assume z € IT1Y®S, then

dry (X', Y") < drv(Xo, Yo) + zv:(si(x) (19)
drv(Xo, Yo) + 2: (20)

< dr(Xo, Yo) + 2(1U2v) @)

= (12111) + 2(1vzv) (22)

< (23)

Equation (19) comes from lemma 3. Equation (20) comes from lemma 1. Equation (21) comes from the
assumption about simulator deviation, and Equation (22) comes from the Chernoff bound described in
Equation (15).
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P
Therefore if 2 € I, then we have

d(®° X', ®@°Y") < s - dpy (X', Y") (24)
<4(120)% —— 2
< 4(120)" 5502 (25)
1
p— 2
. (26)

Here Equation (24) comes from the Direct Product Lemma 3.

(.

Now for the second case, Where x € TIN°, where we want to show that dry(®°X’, ®°Y’) is large. First we
show that dry(X’,Y’) > 11— and to do this, it suffices to show that there exists a single index i in {0,...,v}
such that dTV(XuK) = 120

Assume that simulator acceptance probability p is low, i.e. p < 12, then by the Chernoff bound again,

1 < 1
Pr[Yy = 1] = Pr EZAJZ§ (27)
L j:1
1 & 5 1
1
< 9w —
_exp( 2w 122) (29)
1
<3 (30)

Thus if the simulator acceptance probability is low i.e. p < 35 then dry(Xo,Yp) > >1 5 > m

Now assume that p > 127 then by Lemma 2 we have % % = 12 <30 dw(X, Y;) Thus,I there must be

at least one j € {1,...,v} such that dw(X;,Y;) > 12v

~

Therefore if 2z € TIN® then we have

dy(®° X, ®@°Y") > 1 — exp <s . 2(1;))2) (31)
=1—exp (-4.(120)2 . 2(1;)2) (32)

2
>3 (33)

Here equation (32) comes from the Direct Product Lemma 3.
(.

3 Deferred Proofs

Fact 2 Given two vectors X and Y, X ® Y represents their tensor product (outer prodct).
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IX @Yl = [IX[[ - [[Y]h

Fact 3 Let X = (Xy,X1) be a joint distribution where Xy and X; are independent. Similarly, define
Y = (Yy, Y1). Then we have

dry(X,Y) = dry(Xo, Yo) + drv(X1, Y1) (34)
Lemma 3 (Direct Product Lemma) Let X and Y be distributions such that dry(X,Y) = 6. Then for all
k € N, we have

2
1-— 2exp(—%) < dTV(®kX7 @*Y) < ko

Proof. The upper bound follows directly from Lemma 3 by replacing Xy and X; as i.i.d samples from X,
likewise with Y.

Let § = dy(X,Y) and define S* as Pr[X € S*]—Pr[Y € S*] = 4. Let p = Pr[Y € S*], then Pr[X € S*] = p+4.
Thus, here we have two Bernoulli random variables with mean p and p + §. By the Chernoff Bound (additive

version in Lemma 5):

1. The probability that at most k(p + &) fraction of k samples like in S is equivalent to

5 1)
Pr(> X; <k(p+ 5 ZX (p+0) < 3] (35)
i€[k] ze[k]
k 2
< exp(—§5 ) (36)

2. Similarly, the probability that at least k(p + g) fraction of k samples lie in S is at most exp(—§52).
(This is just the other tail of the Chernoff bound, writing it out explicitly like above makes it pretty
obvious).

(5
Pr > hd
(S Viz kot D] =Pr(- Y V) -p> (37
1€ K] 1€[k
< eXP(*§52) (38)
Define S’ as a set of all k-tuples such that:
/ vk 0 . .. "
S’ = {(zl, ooy zk) € ({0,137)" - at least k(p + 5) fraction of samples, lie in S }
Thus we have,
d(@F X, @%Y) > Pr[@* X € §'] — Pr[@*Y € §'] (39)
k
>1-— 2exp(—§52) (40)
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Equation (39) comes from the definition of statistical difference. Equation (40) come from Pr[@*Y € §’] <
exp(—%£4?) as that is the definition of item 2. And Pr[®*X € '] > 1 — exp(—£4?) from the definition given
in item (1).

O

Lemma 4 (XOR Lemma) Given a pair of distributions Xy, X1 € A(€Q,) and &k € N as input, there exists a
polynomial time computable function that outputs a pair of distributions (Yp,Y7) such that

dTV(Y()v Yl) = dTV(XOa Xl)k

Specifically, Yy, Y7 are defined as follows:
Yo: Uniformly select (by,...,bx) € {0,1}* such that ©F_,b; =0, and set Yy = (Xp, @ --- @ Xp, ).
Yi: Uniformly select (by,...,b;) € {0,1}* such that ©F_;b; = 1, and set V1 = (Xp, ® - -+ @ Xp, ).

Proof. Prove the base case with k = 2. Then the rest follows from induction. Define a; such that all i € [k],
we have a; € {0,1}.

Let Xél), Xfl), Xéz), X1(2) be random variables such that
Zo = XV @ X such that a; & as = 0
Z1 = Xé}) ® Xg) such that a; ®as =1

dwv(Zo, Z1) = 5120 — 21|
‘1

2
(X" - X1 e (g - x37)

N =] = N = N =

1 1 1 2 2
167 = 2 - 11x6 - X211

I
Y

(XY, X1Y) dro(X5Y, X ()
Induction assumption for k£ > 2, we have random variables {Xéi)}ie[k] and {XY)}ie[k] and that

dry(Zo, Z1) = dry(X§, X)L dpy (X7, X))

When we add variables X(()kH) and X 1(]”1), and computing the statistical distance between Zy and Z; reduces
to the base case again as exactly half of the values will have parity 0 and a half will have parity 1. Thus the
lemma holds by induction.

O

Lemma 5 (Chernoff Bound) Let X7, ..., X,, ben independent bernoulli random variables with Pr[X; = 1] =p
for all 7 € [n] for some p > 1/2. Then for any ¢ > 0, we have

1 n
Pr|=) X; < 5| < —2nd? 41
|23 <] < ool )

i=1
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Pr li zn:X,» <p-— 6] < exp(—2n6?) (42)

i=1

Proof. Look it up in any probability textbook. O
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