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1 Prelims

Definition 1 (Entropy) If X is a discrete probability distribution, then the entropy of X, denoted H(X), is
defined as

1 1
HX)=Y Pr[X =z log=——— =E log =————
(X) zﬂ; il 7] -log Pr[X = z] o x [og Pr[X = m]}
Definition 2 (KL Divergence) Let X and Y be two discrete distributions. The relative entropy (or KL
Divergence) between X and Y is given by

KL(X,Y) = IEOC(iX {log I;;[[;(Zg]]]

2 Goal

We have some promise problem IT = (IIY¢s, IIN°) and a private coin HVSZK proof system (P, V) for II with
completeness and soundness error of 2749, Let Sim denote the simulator for the proof system described above.
Given x € I1Yes UTIN®, define the security parameter as x = |z|. We want to use the output of the simulator
Sim(1%,x)" to come up with two distributions X and Y such that

zell™ — H(X)>H(Y)+1

z eV — H(Y)>H(X)+1

where H(X) and H(Y") refers to the entropy of distributions X and Y as defined in Definition 1.

3 Notation

Let (P,V) be an interactive HVSZK proof system for a promise problem II. Let Sim be the simulator. Let
v(k) denote the poly bound on the number of messages V sends to the prover. Let ¢(x) be the poly bound on
the total communication over the proof in bits, and r(x) denote the number of random bits accessed during
the proof by the verifier. Without loss of generality, assume that in the last round of the protocol, when the

"Henceforth, I’ll often drop the security parameter from the notation to make it cleaner and write Sim(1%, z) as
just Sim(x).
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verifier outputs accept or reject, it also sends over all r(x) bits of randomness to the prover”. We will often
abbreviations r = r(k), t = t(k) and v = v(k).

Just like in the public coin HVSZK to statistical closeness reduction, we want to use the output distribution of
the simulator to define distributions that allow us to differentiate between Yes and No instances. Part of this
was quantifying the difference in behaviour between a virtual and a real verifier. In the public coin setting,
we quantified the difference by the statistical difference between messages sent by the virtual verifier and an
algorithm that picked messages uniformly at random, independent of message history (like the prescribed
verifier). We cannot use such a prescribed verifier this time as the verifier’s coins are not known in advance.
Thus, we must quantify the difference between the virtual and real verifiers differently. The following technical
lemmas help us do precisely this.

4 Technical Lemmas

Note that H(Sim(z)s,|Sim(z)2,—1) = H(Sim(z)2,) — H(Sim(x)2,—1) . It measures how many bits of randomness
the ¢’th message of the virtual verifier contributes to the output distribution of the simulator. Since the real
verifier uses r(k) bits of randomness over the whole proof, the sum of these terms should be close to (k) if
the simulation is good.

Lemma 1
v(k)+1
KL (Sim(2), (Psim, V)(@)]) = (k) = 3 H(Sim(x)z, Sim()2,_1) (1)
i=1
v(k)+1
=r(k) — H(Sim(z)2,) — H(Sim(2)2,-1) (2)

Proof. For ~ let v; denote the first ¢ messages.
Pr[Sim = 7]
[(PSim7V) = ’Y]
2v . .
i—1 Pr[Sim; = 7;|Sim;_1 =7,
= ZPr[Sim =19 log —5- Iizy Pr{Sim; = 5:lSimi 1 = 5i1]
S [Ti=1 Pr[(Psim; V)i = 7il(Psim, V)i—1 = vi—1]

. [1;—; Pr[Sima; = v2;|Sima;_1 = v2;-1]
= Pr[Sim =] - lo = 1=
; [ 7] -log [Ti=1 Pr[(Psim; V)2i = 72il(Psim, V)2i—1 = Y2i-1]

KL (Sim, (Psim,V)) = > _ Pr[Sim = 4] - log o
Y

Where the last inequality is by the definition of the virtual prover. Pg;,, is just the simulator pretending to be
the real prover.

Note that for any -, the denominator of the above fraction equals the reciprocal of the number of possible
outcomes of the verifier coins 27", since the even indexed messages of (Psim, V) are generated exactly as the
real verifier would. And we know the real verifier uses r bits of randomness.

2This does not affect soundness as the verifier only does this in the round in which it makes its decision. A cheating
prover cannot use this randomness to its advantage.
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: [1;_; Pr[Sima; = 2;|Sima;_1 = v2i—1]
KL (Sim, (Psim, V Pr[Sim = 7] - log =——== 6
( o Z & Hi=1 Pl"[(PSim, V)zz = 72i|(PSima V)Qi—l = 721‘—1} ( )
i—1 Pr[Simg; = 724|Simg;—1 = 72—
— 3" PifSim — ] - log L= P52 ;f) a1 = i) (7)
¥
1 Pr[Sima; = 79;|Simo;—1 = y2i-1] - [1;_; Pr[Sima;_1 = 72,
_ ZPr[Sim =] log [1i=; Pr[Sim; Y2 |S|m3 1 ’).’2 1] - [, Pr[Simai—1 = y2;-1]
o 27 [[—; Pr[Sima;—1 = v2;_1]

(8)

[1;_, Pr[Sima; = 7] 9)

H i=1 PT[SIsz 1= Y2i— 1]

= ZPr [Sim =~] - log

Y

= Z ZPI‘[SIm = ")/] . PI‘[SImgl = ")/21'] +7r+ Z ZPI‘[SIm = ’}/] . PI‘[Siin_l = ’}/Qi_l}
=1 v =1 vy
(10)

:ZH(Simgj)+r+iH(Sim2]._1) (11)

O

Fact 1 For any two random variables X and Y, ranging over a common universe Q and 6 = dy(X,Y) we
have

IH(X) = H(Y)| <log(|22 — 1) - 6 4 Hz(d) (12)

See any information theory textbook for proof using Fano’s inequality. Vadhan does provide a more direct,
elegant proof.

Lemma 2 Let 6(z) = dry(Sim(x), view[(P, V)(x)]). Then,

v(k)+1

Z H(Sim(x)2

(x)2,-1) < 2(v(k) + 1) [t'(2)6(2) + Ha(3(x))] (13)

Proof. Consider a perfect simulator Sim with 0 deviation for (P, V). The simulation based prover with respect
to Sim is simply P. By Lemma 1 we have

2(v+1) 2(v+1)
r+ Z 1t =r+ Z 1) H(Sim;) (14)
=KL (Slm, (P,V)) (15)
=0 (16)

Equation (14) is just a compact way to represent the difference terms in Lemma 1 and the next line follows
from the lemma. We get that it’s 0 by assumption of perfect simulation. Now we have
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2(v+1) 2(v+1) 2(v+1)
r+ Z 1) H(Simy) < r + Z 1)+t Z [H(Sim;) — H((P, V))| (17)
2(v+1)
=0+ Y [H(Sim;) — H((P,V))| (18)
=1
<2w+1)-[6(t+ 1) + KLy (6)] (19)

The last inequality comes from Fact 1.

Fact 2 For any two distributions X and Y, we have
1. KL(X,Y) >0, and KL(X,Y) =0 < X =Y
2. For any function f, KL (f(X), f(Y)) < KL(X,Y).

3. For0<¢ <¢g<p<yp <1, KLy (p,¢) > KLz (p,q), where KLz (-, -) is the KL distribution between
Bernoulli distributions.

Fact 3 For every joint distribution (X,Y),
1. H(X|Y) < H(X)
2. HX,Y) =H(Y) + HX|Y)

where H(X|Y) = Ey(iy[H(le)]

Lemma 3 Let p denote the simulators acceptance probability, and ¢ be the maximum taken over all provers
P, such that V accepts. Assuming p > ¢, then

KLz (p, ¢) < KL (Sim(z), view[(Psim, V)(x)]) (20)

Proof. Let f be some boolean function such that f(y) = 1 if 7 is accepting (by the real verifier) and 0,
otherwise. By Fact 2,

KL (S|m7 (PSimvv)) Z KL (f(SIm)vf((PSImvv))) = KL2 (pa q/) = KL2 (p7 q) (21)

where ¢’ < g equals the probability of the real verifier accepting when interacting with the (Psim, V).

5 The Reduction

Combining all the lemmas above, we get

KLz (p,q) < 2(v(k) + 1) [t'(2)d(x) + Ha(6(x))]
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Theorem 1 Every promise problem with a weak public coin honest verifier statistical zero knowledge
proof reduces to ED.

Proof. Assume Soundness and Completeness Errors 6. = 6, = 2740 and simulator deviation p < min{#7 e}?,
where ¢ is to be defined. Given x € II and the Simulator Sim we want to construct X and Y as follows:

[Deﬁne X =Sim(x)2 @ Sim(x)4 ..., RSim(z)a, ]

( )

Define Y7 = Sim(z); @ Sim(x)3 ..., ®Sim(z)2y—1

Define Y3 < {0,1}"~7

Define Y3: Run the simulator 8log(t'v’ 4+ 2) times independently. If the virtual verifier rejects in the
majority of the transcripts, set Y3 & {0,1}t'V"+2_ Otherwise, set Y3 = L.

DefineY =YY, ® Ys.

Yes Case Now if 2 € TI'*, then by Lemma 2, we have

r—H(X) + H(Y1) < 20'[t'pu + H(p)] (22)

For very small values of § such as § < 0.01, we have Hy(8) < v/8, therefore setting € = 0.01, we get H(u) < Vi
and as by the simulation assumption we have p < ﬁ we have

r—H(X) + H(Y7) < 20'[t'pu + H(w)] (23)
1

= (24)

<4 (25)

H(Y:) < H(X) +4—1 (26)

By definition of Y3, H(Y3) = r — 7, so we have

HY1) + H(Ys) <HX) +4—7+7r—T (27)

If we show that H(Y3) < 2, then we get

[ H(Y) = H(Y7) + H(Y2) + H(Y3) < H(X) — 1 ]

and we are done. Let Ay,..., A, be the different runs of the simulator where w = 8log(t'v' +2). As x € 11,
we have the probability p of the simulator rejecting to be upper bounded as p — 8. < por p < pu+274%, Given
that € < 0.01 and p < ¢ by definition, then it’s safe to say that p < i. Now the probability of Y3 outputting
t'v' 4 2 random bits is the same as the probability Pr[1 > | A; <1/2] =Pr[2 3" | A; —1/4 < 1/4], which
the Chernoff bound is at most ﬁ Let A be a Bernoulli random variable such that if A = 1, then Y3 does

not output L and PrfA =1]=p' < ﬁ

3Typically we assume deviation to be negligible so this a weaker assumption that ZK
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H(Y3) = H(A, p') (28)
= H(p") + H(A[]p) (29)
<1+p v +2)+(1-p)-0 (30)
<1+1=2 (31)

This handles the Yes case.

No Case But we still have to handle the No cases. We want to show that

z eV — H(Y)>H(X)+1

It suffices to show that either z € TIN® = H(X) < H(Y3) + 1 or x € TIN® = H(X) < H(Y1) + H(Y2) + 1.
Assume that the simulator outputs accepting transcripts (virtual verifier accepts) with low probability at
most l (Low Acceptance For The Virtual Verifier). Once again by the Chernoff Bound, we will get the

probablhty p with which the Simulator outputs L is p < Using the same analysis for H(Y3) as above,

t’v’+2
we get
H(Ys) > (1 —p")(t' +2) (32)
> (t'' +1) (33)
<HX)+1 (34)

(33) Comes from the fact that p < ﬁ so setting p = ﬁ gives us what we want and (34) comes from
the fact that X includes at most ¢'v" random bits.

Now suppose the simulator outputs accept with at least i (High Acceptance For The Virtual Verifier), then
by lemma 3 we have

KL (Sim(z), view[(Psim, V)(2)]) > KLs (1/4,27%°) > 8

Now by Lemma 1 we have

r—H(X)+H(Y;) >8 (35)
H(X)—H(Y1) <r—38 (36)

H(X) — H(Y1) — H(Y2) <7 — 8+ H(Y1) — H(Y2) (37)
<r—8+4+(r-"17 (38)

H(X) < H(Y1) + H(Y2) + 1 (39)

O
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