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Abstract

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may contain errors and will almost certainly contain typos.

These notes formally introduce the idea of preferences and what conditions prefer-
ences must satisfy so that they can be represented by a function that map outcomes to the
real number line. Notes mostly based on [MZS20, Chapter 2] and a few other proofs from
relevant text.

1 Preferences And Utility

A game is a mathematical model of a situation of interactive decision making, in which every player wishes
to attain the “best possible outcome”, knowing that the other player wants to do the same thing. The idea of
utility theory is to formalise what it means to have the “best possible outcome”. For any game let Ω denote
the set of possible outcomes. Apriori, we make no assumptions about Ω, it may be finite, infinite or even
uncountable. Once we have a set of outcomes defined, we need to way to describe how the outcomes compare
with each other for any given player. This is established by preference relations.

Definition 1 (Preference Relation) A preference relation over a set of outcomes Ω is a binary relation
denoted by ⪰. Formally, a binary relation is a subset of ⪰⊆ Ω×Ω, but instead of writing (x, y) ∈⪰, we write
x ⪰ y and read it as the player prefers x over y. We say a player strictly prefers x over y if

x ≻ y ⇐⇒ x ⪰ y ∧ y ⪰̸ x

We say a player is indifferent between x and y (denoted by x ∼ y) if and only if

x ⪰ y ∧ y ⪰ x

Axioms For A Preference Relation

Axiom 1 (Complete) A preference relation ⪰ is complete if for any pair of outcomes x, y ∈ Ω, we have either
x ⪰ y or y ⪰ x, or both.

Axiom 2 (Reflexive) A preference relation ⪰ is reflexive if for any x ∈ Ω, we have either x ⪰ x.

Axiom 3 (Transitive) A preference relation ⪰ is transitive if A ⪰ B and B ⪰ C, we have A ⪰ C.
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At this point we should be able to fully compare outcomes with each other, and determine what the best
possible outcome is. However, preference relations as described are a combinatorial object. Since, we have
well-established tools (such as calculus) for using real numbers, we would like is to instead, have a way of
mapping preferences over outcomes to the real number line. This is what a utility function does.

Definition 2 (Utility Function) Let Ω be a set of outcomes and ⪰ be a complete, transitive and reflexive
preference relation over Ω. A function u : Ω→ R is a utility function representing ⪰, if for all x, y ∈ Ω

x ⪰ y ⇐⇒ u(x) ≥ u(y) (1)

Theorem 1 If u is a utility function representing ⪰, and v : R→ R is a strictly monotone function, then
v ◦ u is also a utility function for ⪰.

Proof. Proving the “If” direction. Assume x ⪰ y, then u(x) > u(y), and by monotonicity, v(u(x)) > v(u(y)).
Proving the “Only If” direction Assume v(u(x)) > v(u(y)), then once again by the monotone the images are
unique, and so u(x) > u(y), implying x ⪰ y.

Why do we care about this theorem? Often we will take a utility function, and consider the log of the
utility function instead. Helps converting products into sums which are easier to analyse.

Question 1 When can be sure that a preference relation ⪰ can be represented by a utility function? Problem
2 on the Tutorial 1 (Lexicographic preferences) showed that the preference function could not have utility
function despite satisfying all the axioms. Can we come up with a set of rules?

Theorem 2 (Finite set of outcomes Ω, generalisation of Slide 53 of lecture notes) Suppose X is finite, then
⪰ is a preference relation if and only if there exists some utility function u : Ω→ R that represents ⪰.

Proof. I’ll only sketch the proof but the complete proof is constructive and can be found [Rig18, Page 5].

Define ⪯ (x) = {y ∈ Ω : x ⪰ y} as lower contour set of x and ⪰ (x) = {y ∈ Ω : y ⪰ x} be the upper contour
set of x. Setting u(x) = | ⪯ (x)| suffices to show that it is a valid utility function and then use the fact the
contour sets must also be finite, as Ω is finite.

We do not actually need the set to be finite. Even outcomes that are countable have utility functions.

Theorem 3 (Countable set of outcomes Ω) Suppose X is countable, then ⪰ is a preference relation if and
only if there exists some utility function u : Ω→ R that represents ⪰.

Proof. See [Rub12, Page 14]. Use induction and transitive property.

Question 2 But what about uncountable outcomes? Are we doomed?

It turns out that we had another property of continuity, then even preferences over uncountable outcomes
have utility representations.

Definition 3 (continuous preferences) A preference relation ⪰ is continuous if the sets ⪯ (x) = {y ∈ Ω : x ⪰
y} and ⪰ (x) = {y ∈ Ω : y ⪰ x} are closed for all x ∈ Ω.

With continuity, we get one of the most famous results in utility theory.

Theorem 4 (Debreuis Representation Theorem) Suppose Ω ⊆ Rn. The binary relation ⪰ on Ω is complete,
transitive, and continuous if and only if there exists a continuous utility representation u : Ω→ R.

Proof. See [Rig18, Slide 12].
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2 Lotteries

Much of life is not deterministic. When the outcome is not deterministic we say we have a lottery. Lotteries
are just a fancy word for probability distributions. A simple lottery D is a probability distribution over
the set of outcomes Ω. We denote with ∆(Ω) the set of all such probability distributions. A compound
lottery, is simply a probability distribution D̃ over a set of probability distributions i.e. D̃ ∈ ∆

(
∆(Ω)

)
. As

convention, and unless otherwise stated, we will denote simple lotteries with D and compound lotteries with
D̃. Additionally, we use the following notation to express that event A occurs with probability pA and event
B occurs with probability pB when sampling from a simple lottery D

D =
[
pA(A), pB(B)

]
Example 1 (Simple and Compound Lotteries ) Consider the situation involving a player who has two
possible moves T and B. If they choose T they receive $100. If they choose B then they receive $200 with
probability 0.5 and $0 with probability 0.5. Then based on the choice the player makes we get two lotteries
of the outcomes :

D1 =
[1
2
($200) +

1

2
($0)

]

D2 =
[1
1
($100) + 0($0)

]
If we assume the player picks T with probability pT and B with probability pB, then we get a compound
lottery

D̃ =
[
pB(D1), pT (D2)

]
Now instead of preferences over outcomes, we need to define preferences over lotteries or distributions. The
main question addressed in this section, is how do you describe preferences with a utility function when the
outcomes are stochastic i.e. given by some lottery. It turns out that if preferences satisfy certain conditions
(which we call Von-Neumann-Morgenstern axioms), then preferences can be described by a linear utility
function over a lottery D.

Definition 4 (Linear Utility Function) A utility function u : ∆(Ω) → R is linear if for every lottery
D =

[
p1(A1), . . . , pK(AK)

]
given by

u(D) =
∑
ω∈Ω

pω · u(ω) = E
X

$←−D
u(X) (2)

where u(ω) refers to the utility of outcome ω ∈ Ω. The term linear comes from the fact that
∑

ω∈Ω pω = 1.
For compound lotteries D̃ = [q1(D1), . . . , qK(DK)], we have the same idea but instead we use

u(D̃) =
∑

k∈[K]

qk · u(Dk) = E
X

$←−D̃
u(DX) (3)
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Question 3 Which preference relations ⪰ can be represented by a linear utility function? To answer this
question, we define 4 axioms called the Von-Neumann-Morgensterns Axioms, which guarantee that a utility
function that can represent ⪰ with a linear utility function.

3 Von-Neumann-Morgensterns Axioms

Axiom 4 (The Archimedean/Continuity Axiom) For every triplet of outcomes A ⪰ B ⪰ C, there exists a
scalar θ ∈ [0, 1] such that

B ∼ [θ(A) + (1− θ)(B)]

What does this say intuitively? Consider the situation where you get $300 with probability 0.9 and $0
with probability 0.1. Assuming more money is better, any reasonable person, would prefer this lottery to the
lottery where we get $300 with probability 0.1 and $0 with probability 0.9. Consider another property of
just receiving $100 guaranteed. The above property is saying that preferences live on a continuous spectrum.
That on side we have the first lottery where we win $300 with high probability and on the other side we have
the other lottery where we win nothing with high probability. For a certain probability (value of θ) on this
spectrum, we will be indifferent between the deterministic outcome and the probabilistic outcome. Later
we will see, that this indifference will be the point at which the expected returns are the same for both the
lotteries.

Axiom 5 (Monotonicity) Let α, β ∈ [0, 1], such that D1 = [α(A), 1 − α(B)], and, D2 = [β(A), 1 − β(B)].
Suppose, A ⪰ B, then

D1 ⪰ D2 ⇐⇒ α ≥ β

What does this say intuitively? Quite simple really, I prefer that the outcome I like happens with higher
probability. If I like rain, I prefer distributions with a higher probability of rain.

Theorem 5 For finite Ω, if ⪰ is complete, reflexive and transitive; and satisfies the archimedean axiom and
monotonicity, and if A ⪰ B ⪰ C, then the value of θ defined in the continuity axiom is unique.

Proof. Exercise for the reader.

Hint: As |Ω| is finite, we are guaranteed the existence of a utility function by Theorem 2. Now use this utility
function to prove the result.

Axiom 6 (Simplification) For each j = 1, . . . , J , let Dj be the following simple lottery

Dj =
[
p
(j)
i (A1), . . . , p

(j)
K (AK)

]
(4)

Let D̃ be the following compound lottery:

D̃ =
[
q1(D1), . . . , qJ(DJ)

]
(5)

For each k = 1, . . . ,K, define

rk =

J∑
j=1

qjp
(j)
k = Pr

X
$←−D̃

[X = Ak] (6)
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as the probability of seeing the outcome Ak under D̃. Then we have

D̃ ∼ D∗ (7)

where D∗ =
[
r1(A1), . . . , rK(AK)

]
What does this say intuitively? The above axiom states that the only thing that affects preferences
between lotteries is the probability distribution and NOT how the lotteries are conducted. As an example,
consider D1 = [ 12 (A1),

1
4 (A2),

1
8 (A3),

1
8 (A4)]. And consider the compound lottery D̃ = [ 34 (Da),

1
4 (Db)], where

Da = [23 (A1),
1
3 (A2)] and Db = [ 12 (A3),

1
2 (A4)]. Although one lottery flips one coin, and the other makes use

of two coins, the final probability of selecting Ai according to D or D̃ is the same for all i ∈ [4]. Thus the two
lotteries are equivalent (or a player is indifferent between them).

Axiom 7 (Independence/Substiution) Let D̃ =
[
q1(D1), . . . , qJ (DJ )

]
be a compound lottery, and let D be a

simple lottery. If Dj ∼ D, then

D̃ ∼
[
q1(D1), . . . , qj(M), . . . , qJ(DJ)

]
What does this say intuitively? The above axiom is sometimes called the axiom of substitution as it
states we can swap between two indifferent lotteries.

4 Proving Von-Neumann-Morgensterns Theorem

Theorem 6 Assume a finite set of outcomes Ω = {A1, . . . , AK}. If a player i’s preference relation ⪰ over D̃
is complete, reflexive, transitive, and satisfies the four VNM axioms, if and only if the preference relation can
be represented by a linear utility function.

Proof. The proof is given in the slides. Otherwise it can be found in [Rub12] as well.

5 Attitude Towards Risk

In this section, we will make a certain set of assumptions that will allow us to look at a utility function
and decide if the person associated with that utility function is risk-neutral, risk-seeking or risk-averse. The
definitions for risk will only make sense under these assumptions.

Assumption 1 The set of outcomes Ω ⊆ R is a subset of the reals. x ∈ Ω denotes the monetary reward a
person receives. If Ω is finite then Ω = Rn for some n ∈ N. Throughout this document we will assume that
the set of outcomes is finite.

Note that the outome is NOT the utility for a person. For example, let Ω = [0, 10], then x = 10 just says
that a person receives 10$. The utility for a person describes how much 10$ is worth to them. The utility
function for person i will be described by a function ui : Ω→ R.

Assumption 2 The utility function that represents players preference MUST be strictly monotonic. This is
to say, no person, regardless of their utility function, will ever prefer an outcome x ∈ Ω over an outcome
y ∈ Ω when x < y.

Assumption 3 We will assume that the players preferences over the outcomes satisfy the Von Nuemann-
Morgenstern axioms.
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By Assumption 3, for any lottery D ∈ ∆(Ω) with finite outcomes i.e |Ω| = k, the utility of the lottery D must
satisfy

ui(D) =
k∑

i=1

Pr[ωi]ui(ωi) (8)

= E
x

$←−D
ui(x) (9)

Definition 5 Player i is risk-neutral if for every lottery D ∈ ∆(Ω) with a finite number of possible outcomes

ui(D) = E
x

$←−D
x (10)

Player i is risk-averse if for every lottery D ∈ ∆(Ω) with a finite number of possible outcomes

ui(D) ≤ E
x

$←−D
x (11)

Player i is risk-seeking (risk-loving) if for every lottery D ∈ ∆(Ω) with a finite number of possible outcomes

ui(D) ≥ E
x

$←−D
x (12)

One way to check if a player is risk-averse is to enumerate if every lottery in D ∈ ∆(Ω) and check the above
conditions. This might be computationally infeasible, so instead we show that suffices to check two arbitrary
outcomes.

Theorem 7 For every p ∈ [0, 1] and every pair of outcomes x, y ∈ Ω, where D = (Pr[x],Pr[y]) = (p, 1− p)

the following holds:

1. Player i is risk-neutral if and only if

ui(D) = E
x

$←−D
ui(x) = ui(p ∗ x+ (1− p) ∗ y) (13)

2. Similarly, player is risk-averse if and only if

ui(D) = E
x

$←−D
ui(x) ≤ ui(p ∗ x+ (1− p) ∗ y) (14)

3. And risk-seeking if and only if

ui(D) = E
x

$←−D
ui(x) ≥ ui(p ∗ x+ (1− p) ∗ y) (15)

Proof. The proof of this theorem follows trivially from the next theorem.

It turns out, there is an even easier method to check if a person is risk-averse or risk-seeking. First we need
to some definitions from convex analysis (see [AA16] for a quick refresher).
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Definition 6 (Convex Function) We say that a function f : Ω→ R is convex if for every x, y ∈ (a, b) and
every λ ∈ (0, 1)

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

Definition 7 (Concave Function) We say that a function f : Ω→ R is concave if for every x, y ∈ (a, b) and
every λ ∈ (0, 1)

f
(
λx+ (1− λ)y

)
≥ λf(x) + (1− λ)f(y)

Corollary 1 (Linear Function) A function is linear if it is both convex and concave.

Theorem 8 (Jensen’s Inequality) If f is a convex function on Ω and D ∈ ∆(Ω) is a random variable taking
values in Ω, then

f(E
X

$←−D
X) ≤ E

X
$←−D

f(X)

If f is concave then

E
X

$←−D
f(X) ≤ f(E

X
$←−D

X)

Theorem 9 A player i whose preference relations satisfy the Von-Neumann-Morgenstern axioms

1. is risk averse if and only if ui is a concave function.

2. is risk seeking if and only if ui is a convex function.

3. is risk-neutral if and only if ui is a linear function.

Proof. Let D =
(
Pr[x1], . . . ,Pr[xk]

)
= (p1, . . . , pk). We have

ui(D) =
k∑

i=1

piui(xi)

We prove the theorem for risk averse, and the rest are identical. Assuming the person is risk-averse, we want
to show that ui is concave. From Defintion 5 we have a player is risk averse has ui(D) ≤ ui(E

x
$←−D

x) for any
D ∈ ∆(Ω).

ui(D) = E
x

$←−D
ui(x)) =

k∑
i=1

pi · ui(xi) ≤ ui

(
E
x

$←−D
x
)
= ui

(
k∑

i=1

pi · xi

)
(16)

As
∑k

i=1 pi = 1, from the definition of a concave function1 (Definition 7) we have that ui is concave. Now
assume that ui is concave, then, we get what we want by Jensens Inequality we have

E
X

$←−D
ui(X) ≤ ui

(
E
X

$←−D
X
)

1The definition I have given is not exactly the definition that I use in (16). However, try and prove that the
definition and the above statement are equivalent. Hint: Use induction. Use https://math.stackexchange.com/
questions/3307227/for-f-convex-and-lambda-i0-sum-lambda-i-1-x-i-in-mathbbr-does if you get stuck.
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The risk-seeking proof is identical with the inequalities switched. For risk-neutral we use the two proofs and
invoke 1.
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