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Abstract

These notes are based on [Vadhan, 1999, Section 3.4].

1 Notation And Basic Definitions

For any probability distribution D, we use 𝑥 ←$ D to denote the event that 𝑥 was sampled according to
distribution D. For any set Y, we use notation 𝑥 ←$ Y to denote 𝑥 was sampled uniformly at random
from the set Y. We denote with Δ (X) the set of all probability distributions over some set X. For any
D ∈ Δ (X), we use D(𝑥) to denote the probability of seeing 𝑥 when sampling according to distribution D i.e
D(𝑥) = Pr𝑥←$D [𝑥]. Similarly, given a set 𝐴, we use D(𝐴) to denote Pr𝑥←$D [𝑥 ∈ 𝐴]. For any distribution
D, we use Supp(D) to denote the support of D. Unless specified otherwise, we use log(·) as short hand for
log2 (·).

Definition 1.1 (Entropy). If D is a discrete probability distribution over some domain X, then the
entropy of D, denoted by H(D), is defined as

H(D) =
∑︁
𝑥

D(𝑥) · log 1

D(𝑥) = E𝑥←$D

[
log

1

D(𝑥)

]

Definition 1.2 (Distributions Encoded By Circuits). Let D be a boolean circuit (with possibly
unbounded fan in) with 𝑚 input gates and 𝑛 output gates. The distribution encoded by D is a probability
distribution on the set {0, 1}𝑛, induced by feeding D with inputs sampled uniformly randomly from
{0, 1}𝑚. We abuse notation by referring to D directly as the distribution instead of the circuit for the
remainder of this document. When we sample from distributions this way – we will often say that we
have white-box access to the distribution.

2 High Level Goal/Problem Statement

We are given sample access to two distributions induced by circuits (Definition 1.2) D1 and D2 with 𝑚

input gates and 𝑛 output gates. We are promised that the two distributions have an entropy gap or entropy
difference i.e we are guaranteed that |H(D1) − H(D2) | ≥ 1. More formally,
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Definition 2.1 (Entropy Difference). Entropy difference is the promise problem ED = {(ED(𝑛)Yes ,ED(𝑛)No )}𝑛∈N
where

ED(𝑛)Yes = {D1,D2 : H(D1) ≥ H(D2) + 1}

ED(𝑛)No = {D1,D2 : H(D2) ≥ H(D1) + 1}

Here D1,D2 are probability distributions over Y = {0, 1}𝑛.

Problem 1. We want to show that the Entropy Difference promise problem karp reduces to the Statistical
Difference promise problem described below. Throughout this document when we say polynomial time, we
imply polynomial time in the size of the domain of the distribution, which using the above notation is 𝑛. So
we have access to two distributions D1 and D2, which have an entropy gap. We want to show that there
exists some algorithm 𝐴 runsa in time poly(𝑛) to produce to different distributions D𝐴 and D𝐵 such that
they are either promised to at most 𝛽 apart or at least 𝛼 apart in variation distance.

asampling from a distribution is considered to be 1 time step

Definition 2.2 (Statistical Difference). For constants 0 ≤ 𝛽 < 𝛼 ≤ 1 such that 𝛼2 > 𝛽, Statistical
Difference is a the promise problem (SD𝛼,𝛽) = {SD𝛼,𝛽,𝑛

Yes , SD𝛼,𝛽,𝑛

No }𝑛∈N, where

SD𝛼,𝛽,𝑛

Yes = {(D1,D2) : 𝑑TV (D1,D2) > 𝛼}
SD𝛼,𝛽,𝑛

No = {(D1,D2) : 𝑑TV (D1,D2) < 𝛽}

where D1 and D2 are distributions encoded by circuits with 𝑛 output gates.

3 Important Lemmas

Attention Clément: These leftover hash lemmas are originally from [Impagliazzo et al., 1989] but there
are good notes for these https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf. My
conjecture is that if we can get left over hashing lemmas for | |D||33 instead of H(D), the rest will follow easily.

Definition 3.1 (Flat Distributions). A distribution D is flat if it is uniformly distributed over its
support. If D is a flat distribution then, we have |Supp(D)| = 2H(D) . If the support size is equal to the
size of the domain, then the corresponding flat distribution is the uniform distribution.

Definition 3.2 (Universal Hash Functions). A set H of functions mapping a domain X to a range Y is
2-universal if for every 𝑥 ≠ 𝑦 ∈ X, and 𝑎, 𝑏 ∈ Y,

Pr
ℎ←$H

[ℎ(𝑥) = 𝑎 ∧ ℎ(𝑏) = 𝑏] = 1

|Y|2

We denote with H𝑚,𝑛 any 2-universal set of functions from mapping X = {0, 1}𝑚 to Y = {0, 1}𝑛.

Lemma 3.1: Leftover Hash Lemma For Flat Distributions with High Entropy

Let H be a 2-universal set of hash functions mapping a domain X to a range Y. Let D ∈ Δ (X) be a
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flat distribution such that |Y| ≤ 𝜀 · 2H(D) = 𝜀 · |Supp(D)|.

1. Let D𝐴 ∈ Δ (H × Y) denote the distribution induced by the following process – Pick ℎ←$ H , and
then sample 𝑥 ←$ D. Finally output (ℎ, ℎ(𝑥)).

D𝐴(ℎ, 𝑦) = Pr
ℎ←$H,𝑥←$D

[(ℎ, ℎ(𝑥) = 𝑦)]

2. Let D𝐵 ∈ Δ (H × Y) denote the uniform distribution over H ×Y.

D𝐵 (ℎ, 𝑦) = Pr
ℎ←$H,𝑦←$Y

[(ℎ, 𝑦)]

Then we have

𝑑TV (D𝐴,D𝐵) ≤ 𝜀Ω(1) (1)

On the contrary, if the flat distribution we are sampling from has small support (or low entropy), then
sampling a hash function uniformly and then hashing samples from the distribution produces a distribution
far away from uniform.

Lemma 3.2: Leftover Hash Lemma For Flat Distributions with Low Entropy

Let H be a 2-universal family of hash functions mapping a domain X to a range Y. Let D ∈ Δ (X) be
a flat distribution such that |Supp(D)| = 2H(D) ≤ 𝜀 · |Y|.

1. Let D𝐴 denote the distribution induced by the following process – Pick ℎ←$ H , and then sample
𝑥 ←$ D. Finally output (ℎ, ℎ(𝑥)).

D𝐴(ℎ, 𝑦) = Pr
ℎ←$H,𝑥←$D

[(ℎ, ℎ(𝑥) = 𝑦)]

2. Let D𝐵 denote the uniform distribution over H ×Y.

D𝐵 (ℎ, 𝑦) = Pr
ℎ←$H,𝑦←$Y

[(ℎ, 𝑦)]

Then we have

𝑑TV ((D𝐴,D𝐵)) ≥ 1 − 𝜀 (2)

Lemma 3.3: Generalised Left Over Hash Lemma

Let H be a family of 2-universal hash functions mapping a domain X to a range Y. Let D ∈ Δ (X)
such that least 1 − 𝛿 fraction of the support elements have probability mass at most 𝜀

|Y | .

1. D𝐴: The induced distribution from the process of sampling ℎ←$ H and 𝑥 ←$ D, and outputting
(ℎ, ℎ(𝑥)) ←$ D𝐴).

2. D𝐵 = Uniform [H × Y].

Then
𝑑TV (D𝐴,D𝐵) ≤ 𝑂 (𝛿 + 𝜀1/3)
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4 Simpler Problem

We begin with two simplifying assumptions

1. We will assume that the entropy gap is large i.e for some large 𝑘 = 𝑂 (𝑛). We are promised that
|H(D1) − H(D2) | ≥ 𝑘.

2. Assume that apart from having an entropy gap we are also promised that both distributions are flat
(Definition 3.1) .

4.1 An Inefficient Reduction
We first start with a reduction that is not polynomial time in 𝑛 the size of the domain of the distributions.
Then we proceed to make the reduction efficient by using the whiteboxness of the distribution for which we
have sampling access. To reduction is as follows:

Algorithm 1: Reduction For Flat Distributions With Large Entropy Gap

1. Set D = D2 in the above lemmas (Lemma 3.2 and Lemma 3.1 ). This is the distribution from which we
sample before applying a randomly sampled hash function ℎ←$ H .

2. Then pick Y ⊆ {0, 1}𝑛 such that |Y| = 2H(D1 ) = Supp(D1).

The distributions D𝐴 and D𝐵 in the lemmas above can be computed efficiently. Note that if H(D1) −
H(D2) ≥ 𝑘, it implies that |Supp(D1) | − |Supp(D1) | ≥ 𝑘 and we are in the setting of Lemma 3.2. This would
imply 𝑑TV (D𝐴,D𝐵) ≤ 2−𝑘 . If H(D1) ≫ H(D2), it implies that |Supp(D1) | ≫ |Supp(D2) |, and thus, we are
in the setting of Lemma 3.1. This would imply 𝑑TV (D𝐴,D𝐵) ≥ 1− 2−𝑘 . The only thing left to show is that if
we can efficiently do steps (1) and (2) described above, then we are DONE! .

Step 1, is easy as we just need to sample ℎ ←$ H which we know how to do efficiently. Unfortunately,
Step 2, is hard. We do not know any efficient algorithm that can estimate H(D) from just sample access
to distributions. If we could then, the entropy gap problem would be in BPP and there would be no need
of a prover. Finding an efficient solution to estimate H(D) would imply a collapse of the polynomial time
hierarchy. Luckily, we have a little more than just sample access to distributions D1 and D2. We have access
to circuits that induce these distributions.

Attention Clément: In [Herman and Rothblum, 2022] they do not have this issue. D1 is given to the
verifier by the prover in the form of a histogram. The verifier can set Y = 2H(D1 ) by just computing H(D1).
The distribution D2 is the one the verifier has sample access to. So they do not need this circuit trick from
[Okamoto, 1996] that Salil uses in his thesis that is described below.

4.2 Getting around estimating entropy
In this section, for a distribution D, we use 𝐶D : {0, 1}𝑚 → {0, 1}𝑛 to denote the circuit that induces this
distribution. Define ΩD1

(𝑥) = {𝑟 ∈ {0, 1}𝑚 : 𝐶D1
(𝑟) = 𝑥}. Since D1 is flat, if 𝑥 ∈ Supp(D1), then we have

|ΩD1
(𝑥) | = 2𝑚 · D1 (𝑥) = 2𝑚 · 2−H(D1 )

For 𝑥 ∉ Supp(D1), we have

|ΩD1
(𝑥) | = 2𝑚 · D1 (𝑥) = 0

Thus for any 𝑥 ∈ Supp(D1), we have

|Supp(D2) ×ΩD1
(𝑥) | = 2H(D2 )−H(D1 )+𝑚

Thus H(D2) ≫ H(D1) =⇒ |𝑆D2
×ΩD1

(𝑥) | ≫ 2𝑚 and H(D1) ≫ H(D2) =⇒ |𝑆D2
×ΩD1

(𝑥) | ≪ 2𝑚, where
𝑚 is available to us as we know the circuits that encode the distributions. So instead of hashing samples
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from D2 to Y = 2H(D1 ) as specified by the algorithm, we will hash samples from the uniform distribution on
Supp(D2) × ΩD1

(𝑥) for some 𝑥 ∈ Supp(D1). In other words, in the lemmas above we set Y = {0, 1}𝑚, and
D = Uniform

[
Supp(D2) ×ΩD1

(𝑥)
]
. Accordingly, define H = H𝑚+𝑛,𝑚, and let D𝐴 and D𝐵 as the following

distributions (note we are still doing the same thing as we did earlier just with distributions with slightly
larger domains).

D𝐴: Choose 𝑟 ←$ {0, 1}𝑚 and let 𝑥 = D1 (𝑟). Choose ℎ ←$ H and 𝑦 ←$ D2. Output (𝑥, ℎ, ℎ(𝑟 | |𝑦)).
This is equivalent to saying (𝑥, ℎ, ℎ(𝑟, 𝑦)) ←$ D𝐴

D𝐵: Choose 𝑥 ←$ D1, ℎ ←$ H and 𝑧 ←$ {0, 1}𝑚. Output (𝑥, ℎ, 𝑧). This is equivalent to saying
(𝑥, ℎ, 𝑧) ←$ D𝐵

Thus by Lemma 3.2

H(D1) > H(D2) + 𝑘 =⇒ 𝑑TV (D𝐴,D𝐵) ≥ 1 − 2−Ω(𝑘 )

By Lemma 3.1,

H(D1) < H(D2) + 𝑘 =⇒ 𝑑TV (D𝐴,D𝐵) ≤ 2−Ω(𝑘 )

But we still have not answered the question of how we efficiently sample from ΩD1
(𝑥)?

We simply simulate it by sampling 𝑟 ←$ {0, 1}𝑚, and compute 𝑥 = 𝐶D1
(𝑟). Now conditioned on 𝑥, 𝑟

was uniformly sampled from ΩD1
(𝑥). This gives us a single sample 𝑟 ←$ ΩD1

(𝑥).

At this point we have solved our problem, given our assumptions (1) the entropy gap was large enough,
and (2) the distributions were flat.

5 Removing Assumptions

5.1 Small Entropy Gap To Large Entropy Gap
What happens if we do not have that |H(D1) − H(D2) | ≥ 𝑘. The solution is simple, just replace D1

and D2 above with 𝑘 independent copies i.e. ⊗𝑘D1 and ⊗𝑘D2. As we have H(⊗𝑘D1) = 𝑘H(D1) and
H(⊗𝑘D2) = 𝑘H(D2). We get |H(⊗𝑘D1) − H(⊗𝑘D2) | ≥ 𝑘, as we are promised that |H(D1) − H(D2) | ≥ 1.

5.2 Non-Flat Distributions
So the only question we need to resolve is what happens when D1 and D2 are not flat ? It turns out that
even if D1 and D2 are not flat, and if we sample “enough” independent copies, they become “nearly” flat.
The task of this section is to define precisely, how many copies is enough, and what “nearly” means.

Definition 5.1 (Heavy, Light And Typical Elements Of A Distribution). Let D ∈ Δ (X) and fix 𝜂 ∈ R+.
For any 𝑥 ∈ Supp(D)

1. 𝑥 is 𝜂-heavy if D(𝑥) ≥ 2𝜂−H(D) .

2. 𝑥 is 𝜂-light if D(𝑥) ≤ 2−𝜂−H(D)

3. 𝑥 is 𝜂-typical otherwise.
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Definition 5.2 (Nearly Flat Distributions). Fix 𝛽 ∈ R+ and pick an arbitrary 𝑐 > 0. For a distribution
D, let 𝑇 (D)

𝑐𝛽
= {𝑥 ∈ Supp(D) : 𝑥 is 𝑐𝛽 − typical} denote the set of 𝑐𝛽 typical elements in the support of

D. We say D is 𝛽-flat if for every 𝑐 > 0,

D(𝑇 (D)
𝑐𝛽
) = Pr

𝑥←$D

[
𝑥 ∈ 𝑇 (D)

𝑐𝛽

]
≥ 1 − 2−𝑐2+1

The above definition can be thought of as saying that a “nearly flat” distribution has all but negligible
support being non-typical (not that many light or heavy elements).

Lemma 5.1: Repetition flattens a distribution

Let D be a distribution induced by a circuit with 𝑚 inputs and 𝑘 be a positive integer, and ⊗𝑘D denote
𝑘 independent copies of D. Supposea for all 𝑥 ∈ Supp(D), we have Pr𝑋←$D [𝑋 = 𝑥] ≥ 1

2𝑚 . Then ⊗𝑘D is√
𝑘 · 𝑚-flat.
aWhich the circuit representation of the circuit guarantees us. There has to be one coin 𝑟 ∈ {0, 1}𝑚 such that the

circuit outputs 𝑥 for 𝑥 to be in 𝑆D .

Attention Clément: In [Herman and Rothblum, 2022] they assume that they can ignore elements with
very small probability. So they do not really need the circuit induced distributions to get for all 𝑥 ∈ Supp(D)
D(𝑥) ≥ 1

2𝑚 .

Proof. Fix any 𝑐 > 0 and 𝛽 ∈ R+ whose value will defined later. For any 𝑥 ∈ Supp(D), Define weight(𝑥) =
− log(D(𝑥)). Thus weight(𝑥) ∈ [0, 𝑚]1. For ®𝑥 ←$ ⊗𝑘D we say ®𝑥 is 𝑐𝛽-typical if for all 𝑖 ∈ [𝑘], 𝑥𝑖 is 𝑐𝛽-typical.
Or in other words, we have, for ®𝑥 = (𝑥1, . . . , 𝑥𝑘), for all 𝑖 ∈ [𝑘],

−𝑐𝛽 ≤ 𝑤𝑡 (𝑥𝑖) − H(D) ≤ 𝑐𝛽 (3)

Thus

Pr
®𝑥←$⊗𝑘D

[®𝑥 is 𝑛𝑜𝑡 atypical ] = Pr
®𝑥←$⊗𝑘D

[∃𝑥 𝑗 : 𝑥 𝑗 is 𝑛𝑜𝑡 atypical ] (4)

≤ Pr
®𝑥←$⊗𝑘D


������ 1𝑘 ∑︁

𝑖∈[𝑘 ]
weight(𝑥𝑖) − H(D)

������ ≥ 𝑐𝛽

𝑘

 (5)

Equation (5) comes from the union bound. Note weight(𝑥𝑖) is a bounded random variable in [0, 𝑚] and
E𝑥𝑖←$D [weight(𝑥𝑖)] = H(D). Thus, using Hoeffding Inequality, we get

Pr
®𝑋←$⊗𝑘D


������ 1𝑘 ∑︁

𝑖∈[𝑘 ]
𝑤𝑡 (𝑋𝑖) − H(D)

������ ≥ 𝑐

𝑘
𝛽

 ≤ 2 · exp
(
−2 · 𝑘 (𝑐𝛽/𝑘)2

𝑚2

)
(6)

Plugging 𝛽 =
√
𝑘𝑚 gives us

Pr
®𝑥←$⊗𝑘D


������ 1𝑘 ∑︁

𝑖∈[𝑘 ]
weight(𝑥𝑖) − H(D)

������ ≥ 𝑐

𝑘
𝛽

 ≤ 2−𝑐
2+1 (7)

□

1By assumption D(𝑥 ) ≥ 2−𝑚
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6 General Construction Without Assumptions

With the above definitions in place, we are ready to derive the general construction. Let 𝑘 be a large
constant whose value can be thought of as the security parameter. Let 𝑞 = 9𝑘𝑚2 and define D̃1 = ⊗𝑞D1 and
D̃2 = ⊗𝑞D2, where D1 and D2 are distributions induced by circuits with 𝑚 inputs and 𝑛 outputs.

We will play the same game as in Section 4.2, but instead of D1 and D2, we will use D̃1 instead of D1

and D̃2 for D2.

Let 𝑚′ = 𝑞𝑚 and 𝑛′ = 𝑞𝑛. Let H = H𝑚′+𝑛′ ,𝑚′ .

1. D𝐴: The induced distribution of the following procedure: Sample 𝑟 ←$ {0, 1}𝑚′ , and let
𝑥 = 𝐶D̃1

(𝑟), Sample 𝑦 ←$ D2, Sample ℎ←$ H . Output (𝑥, ℎ, ℎ(𝑟 | |𝑦))

2. D𝐵: The distribution induced by 𝑥 ←$ D̃1, ℎ←$ H , and 𝑟 ′ ←$ {0, 1}𝑚′ .

To make the proof more readable, we split each component of the above distributions into 3 parts. Let
D𝐴 = (D𝐴1

,D𝐴2
,D𝐴3

) and D𝐵 = (D𝐵1
,D𝐵1

,D𝐵3
) be those parts. To show D𝐴 and D𝐵 are statistically

far, it suffices to show, D𝐴3
and D𝐵3

are far, conditioned on the event 𝑥 ←$ D̃1 and ℎ ←$ H . By Lemma
5.1, D̃1 and D̃2 are 𝛽 =

√
𝑞𝑚 =

√
9𝑘𝑚2 · 𝑚 = 3

√
𝑘𝑚2 flat. Since D̃1 is 3

√
𝑘𝑚2 flat, setting 𝑐 =

√
𝑘, we have

D̃1 (𝑥 is 𝛽
√
𝑘 typical) ≥ 1 − 2−𝑘+1.

Remark. When we say 𝑥 is typical, unless specified otherwise, we mean 𝑥 is 𝛽
√
𝑘-typical. To make things

easier to read, we will highlight 𝑥 in blue, to denote that we are dealing with a typical 𝑥.

We write D𝐴𝑥,ℎ
as the distribution D𝐴3

conditioned on the event that 𝑥 ←$ D̃1 is typical. Similarly, we
define D𝐵𝑥,ℎ

as the distribution D𝐵3
conditioned on 𝑥 being typical. From the definition of D𝐵3

, we have
D𝐵𝑥,ℎ

is distributed uniformly over {0, 1}𝑚′ (there is no difference between D𝐵3
and D𝐵𝑥,ℎ

).

D𝐴𝑥,ℎ
on the other hand is different from D𝐴3

, and it denotes the distribution induced by outputting
ℎ(𝑟 | |𝑦), when (𝑟, 𝑦) ←$ ΩD̃1

(𝑥) × D̃2, with the important constraint that the 𝑥 in ΩD̃1
(𝑥) is typical. Note as

D̃2 is also 𝛽-flat, we have D̃2 (𝑦 is typical) ≥ 1 − 2−𝑘+1 (setting 𝑐 =
√
𝑘). Now we define the set,

𝑇𝑥,ℎ = {ℎ(𝑟, 𝑦) : 𝑟 ∈ ΩD̃1
(𝑥) ∧ 𝑦 is typical}

We have
D𝐴𝑥,ℎ

(𝑇𝑥,ℎ) ≥ 1 − 2−𝑘+2 (8)

Why? The probability that we sample a non-typical 𝑥 ←$ D̃1 is at most 2−𝑘+1, and the the probability
that we sample non typical 𝑦 ←$ D̃2 is at most 2−𝑘+1. D𝐴𝑥,ℎ

(𝑇𝑥,ℎ) is the probability that I sample 𝑧 ←$ 𝐴𝑥,ℎ

and 𝑧 ∈ 𝑇𝑥,ℎ. For 𝑧 to be in 𝑇𝑥,ℎ, two things have to happen, when I sample 𝑥 ←$ D̃1, 𝑥 must be typi-
cal, and when I sample 𝑦 ←$ D̃2 to feed into ℎ, I need 𝑦 to be typical. By the union bound we get what we want.

Note that |𝑇𝑥,ℎ | ≤ |ΩD̃1
(𝑥) | · 𝑛typical, where 𝑛typical denotes the number of

√
𝑘𝛽 typical 𝑦’s in Supp(D̃2).

Finally we get,

|ΩD̃1
(𝑥) | = 2𝑚

′ · D̃1 (𝑥 is typical) (9)

≤ 2𝑚
′
2
√
𝑘𝛽−H(�D1 ) (10)

and
𝑛typical ≤ 2

√
𝑘𝛽+H(�D2 ) (11)
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For (9) there are 2𝑚
′ values for 𝑟, but the number of 𝑟’s that map to any 𝑥 depends on the probability of

seeing that 𝑥. (10) comes from that definition of typical (Defintion 5.1) which says for 𝑥 to be 𝜂-typical, we
must have D̃1 (𝑥) ≤ 2−𝜂−H( D̃1 ) . So that’s the largest D̃1 (𝑥) can be. Here 𝜂 =

√
𝑘𝛽. (11) since each typical 𝑦

must have mass at least 2−H( D̃2 )−
√
𝑘𝛽 (Defintion 5.1). Also2 note that 𝑞 > 2

√
𝑘𝛽 + 𝑘. Now we have all the

machinery to prove the final statement.

Yes CASE : Now assume that (D1,D2) ∈ EDYes i.e. H(D1) > H(D2) + 1. Then H(D̃1) > H(D̃2) + 𝑞, where
𝑞 > 2

√
𝑘𝛽 + 𝑘 (as repetition amplifies the gap).

|𝑇𝑥,ℎ | ≤ 𝑛typical · |ΩD̃1
(𝑥) | (12)

≤ 2
√
𝑘𝛽+H(�D2 )2𝑚

′+
√
𝑘𝛽−H(�D1 ) (13)

= 2𝑚
′+H(�D2 )−H(�D1 )+2

√
𝑘𝛽 (14)

≤ 2𝑚
′−𝑞+2

√
𝑘𝛽 (15)

≤ 2𝑚
′−𝑘 (16)

Equations (15) and (16) comes from the fact that 𝑞 > 2
√
𝑘𝛽 + 𝑘.

Finally, from the definition of total variation difference

𝑑TV
(
𝐴𝑥,ℎ, 𝐵𝑥,ℎ

)
= max

𝑆
|D𝐴𝑥,ℎ

(𝑆) − D𝐵𝑥,ℎ
(𝑆) | (17)

≥ D𝐴𝑥,ℎ
(𝑇𝑥,ℎ) − D𝐵𝑥,ℎ

(𝑇𝑥,ℎ) (18)

≥ (1 − 2−𝑘+2) −
|𝑇𝑥,ℎ |
2𝑚′

(19)

≥ (1 − 2−𝑘+2) − 2−𝑘 (20)

= 1 −𝑂 (2−𝑘) (21)

(19) comes from equation (8) and the fact that D𝐵𝑥,ℎ
= D𝐵3

No CASE : Now assume that (D1,D2) ∈ EDNo i.e. H(D2) > H(D1) + 1. Then H(D̃2) > H(D̃1) + 𝑞, where
𝑞 > 2

√
𝑘𝛽 + 𝑘 (as shown above). Note that ΩD̃1

(𝑥) is a flat distribution (as all 𝑟 ∈ ΩD̃1
(𝑥) have the same

probability of mapping to any 𝑥) and D̃2 is a 𝛽-flat. Thus ΩD̃1
(𝑥) × D̃2 is also 𝛽-flat. Conditioned on 𝑥 being

typical, and let D be shorthand for the sampling distribution ΩD̃1
(𝑥) × D̃2. Then we have

H(D) = H(ΩD̃1
(𝑥) × D̃2) (22)

= H(ΩD̃1
(𝑥)) + H(D̃2) (23)

= log |ΩD̃1
(𝑥) | + H(D̃2) (24)

≥ (𝑚′ − H(D̃1) −
√
𝑘𝛽) + (H(D̃1) + 2

√
𝑘𝛽 + 𝑘) (25)

≥ 𝑚′ + 𝑘 +
√
𝑘𝛽 (26)

Equation (25) comes D̃1 being 𝛽-flat and thus for each 𝑥 ∈ Supp(D1) that is typical, we have D̃1 (𝑥) ≥
2−
√
𝑘𝛽−H( D̃1 ) . Therefore, |ΩD̃1

(𝑥) | = D̃1 (𝑥) · 2𝑚 ≥ 2−
√
𝑘𝛽−H( D̃1 )+𝑚. The second summand is just saying

H(D̃2) > H(D̃1) + 𝑞, where 𝑞 > 2
√
𝑘𝛽 + 𝑘

2Expand the RHS by plugging in 𝛽 =
√
𝑞, its clear the LHS is bigger.
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Set Y = {0, 1}𝑚′ and 𝛿 = 2−𝑘+1. As it’s 𝛽-flat, we have with probability 1 − 𝛿, we sample a typical 𝑥.
And as 𝑥 is typical, we have D(𝑥) ≤ 2

√
𝑘𝛽−H(D) ≤ 2−𝑚

′−𝑘 , where the last inequality comes from Equation
(26). Setting 𝜀 = 2−𝑘 , we get the same conditions for the generalised left over hashing lemma (Lemma 3.3)
– at least 1 − 𝛿 of the fraction of elements in the support of D have mass at least 2−(𝑚

′+𝑘 ) . Therefore, the
statistical difference between D𝐴 and D𝐵 must be at most 𝑂 (2−𝑘/3 + 2−𝑘+1), which is negligible.
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